Existence and uniqueness theorem on weak solutions to the parabolic-elliptic Keller-Segel system

被引:23
|
作者
Kozono, Hideo [1 ]
Sugiyama, Yoshie [2 ]
Yahagi, Yumi [3 ]
机构
[1] Waseda Univ, Dept Math, Tokyo 1698555, Japan
[2] Osaka City Univ, Dept Math, Osaka 5588585, Japan
[3] Tsuda Univ, Dept Math, Tokyo 1878577, Japan
关键词
REGULARITY; EQUATIONS; LP;
D O I
10.1016/j.jde.2012.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In R-n (n >= 3), we first define a notion of weak solutions to the Keller-Segel system of parabolic-elliptic type in the scaling invariant class L-s(0, T; L-r (R-n)) for 2/s + n/r = 2 with n/2 < r < n. Any condition on derivatives of solutions is not required at all. The local existence theorem of weak solutions is established for every initial data in L-n/2(R-n). We prove also their uniqueness. As for the marginal case when r = n/2, we show that if n >= 4, then the class C([0, T); L-n/2(R-n)) enables us to obtain the only weak solution. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2295 / 2313
页数:19
相关论文
共 50 条
  • [21] Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane
    Corrias, L.
    Escobedo, M.
    Matos, J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1840 - 1878
  • [22] Critical mass in a quasilinear parabolic-elliptic Keller-Segel model
    Cao, Xinru
    Gao, Xiaotong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 449 - 471
  • [23] Classical solutions to Cauchy problems for parabolic-elliptic systems of Keller-Segel type
    Winkler, Michael
    OPEN MATHEMATICS, 2023, 21 (01):
  • [24] On Cauchy problem for fractional parabolic-elliptic Keller-Segel model
    Anh Tuan Nguyen
    Nguyen Huy Tuan
    Yang, Chao
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 97 - 116
  • [25] ON THE NONLOCAL PARABOLIC-ELLIPTIC KELLER-SEGEL MODEL IN BOUNDED DOMAINS
    Tran, Dinh-ke
    Tran, Thi-thu
    Tran, Van-tuan
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (11) : 1730 - 1747
  • [26] Existence and uniqueness theorem on mild solutions to the Keller-Segel system in the scaling invariant space
    Kozono, Hideo
    Sugiyama, Yoshie
    Wachi, Takuya
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1213 - 1228
  • [27] Existence and uniqueness of weak periodic solutions for a coupled parabolic-elliptic system
    Elmassoudi, Mhamed
    Ahakkoud, Yassine
    Bennouna, Jaouad
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (03) : 641 - 657
  • [28] Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane
    Campos, Juan F.
    Dolbeault, Jean
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (05) : 806 - 841
  • [29] On asymptotically almost periodic solutions of the parabolic-elliptic Keller-Segel system on real hyperbolic manifolds
    Thuy, Tran Van
    Van, Nguyen Thi
    Xuan, Pham Truong
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (04): : 665 - 682
  • [30] Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity
    Fujie, Kentarou
    Winkler, Michael
    Yokota, Tomomi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (06) : 1212 - 1224