Homoclinic bifurcation analysis for logistic map

被引:0
|
作者
Miino, Yuu [1 ]
Ueta, Tetsushi [2 ]
机构
[1] Tokyo Univ Technol, Sch Engn, Dept Elect & Elect Engn, 1404-1 Katakuramachi, Hachioji, Tokyo 1920982, Japan
[2] Tokushima Univ, Ctr Admin Info Tech, 2-1 Minamijosanjimacho, Tokushima 7700814, Japan
来源
关键词
homoclinic bifurcation; logistic map; global bifurcation; Feigenbaum constants;
D O I
10.1587/nolta.13.209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we have developed the method to obtain the homoclinic bifurcation parameter of an arbitrary targeted fixed point in the logistic map T-r. We have considered the geometrical structure of T-r around x = 0.5 and derived the core condition of the bifurcation occurrence. As the result of numerical experiment, we have calculated the exact bifurcation parameter of the fixed point of T-r(l) with l <= 256. We have also discussed the Feigenbaum constants found in the bifurcation parameter and the fixed point coordinate sequences. This fact implies the local stability of the fixed point and global structure around it are in association via the constants.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [31] BIFURCATION IN A COUPLED LOGISTIC MAP - SOME ANALYTIC AND NUMERICAL RESULTS
    CHOWDHURY, AR
    CHOWDHURY, K
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (01) : 97 - 111
  • [32] Asymptotic analysis of subcritical Hopf-homoclinic bifurcation
    Guckenheimer, J
    Willms, AR
    PHYSICA D, 2000, 139 (3-4): : 195 - 216
  • [33] Bifurcation analysis of delayed logistic equation
    Yang, ZH
    Guo, Q
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) : 454 - 476
  • [34] Bifurcation analysis of the Henon map
    Zhusubaliyev, ZT
    Rudakov, VN
    Soukhoterin, EA
    Mosekilde, E
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 5 (03) : 203 - +
  • [35] The complex Lorenz model: Geometric structure, homoclinic bifurcation and one-dimensional map
    Vladimirov, AG
    Toronov, VY
    Derbov, VL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (04): : 723 - 729
  • [36] Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay
    Tang, Longkun
    Wu, Xiaoqun
    Lu, Jinhu
    Lu, Jun-an
    CHAOS, 2015, 25 (03)
  • [37] A Trick Formula to Illustrate the Period Three Bifurcation Diagram of the Logistic Map
    Bei Ye FENG Institute of Applied Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing P R China
    数学研究与评论, 2010, 30 (02) : 286 - 290
  • [38] Bifurcation and chaos of a new discrete fractional-order logistic map
    Ji, YuanDong
    Lai, Li
    Zhong, SuChuan
    Zhang, Lu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 : 352 - 358
  • [39] A Trick Formula to Illustrate the Period Three Bifurcation Diagram of the Logistic Map
    Bei Ye FENG Institute of Applied Mathematics
    Journal of Mathematical Research with Applications, 2010, (02) : 286 - 290
  • [40] BIFURCATION OF DEGENERATE HOMOCLINIC ORBITS
    Zeng Weiyao(Hunan Light industry College
    Annals of Applied Mathematics, 1996, (03) : 353 - 361