Homoclinic bifurcation analysis for logistic map

被引:0
|
作者
Miino, Yuu [1 ]
Ueta, Tetsushi [2 ]
机构
[1] Tokyo Univ Technol, Sch Engn, Dept Elect & Elect Engn, 1404-1 Katakuramachi, Hachioji, Tokyo 1920982, Japan
[2] Tokushima Univ, Ctr Admin Info Tech, 2-1 Minamijosanjimacho, Tokushima 7700814, Japan
来源
关键词
homoclinic bifurcation; logistic map; global bifurcation; Feigenbaum constants;
D O I
10.1587/nolta.13.209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we have developed the method to obtain the homoclinic bifurcation parameter of an arbitrary targeted fixed point in the logistic map T-r. We have considered the geometrical structure of T-r around x = 0.5 and derived the core condition of the bifurcation occurrence. As the result of numerical experiment, we have calculated the exact bifurcation parameter of the fixed point of T-r(l) with l <= 256. We have also discussed the Feigenbaum constants found in the bifurcation parameter and the fixed point coordinate sequences. This fact implies the local stability of the fixed point and global structure around it are in association via the constants.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条