Homoclinic bifurcation analysis for logistic map

被引:0
|
作者
Miino, Yuu [1 ]
Ueta, Tetsushi [2 ]
机构
[1] Tokyo Univ Technol, Sch Engn, Dept Elect & Elect Engn, 1404-1 Katakuramachi, Hachioji, Tokyo 1920982, Japan
[2] Tokushima Univ, Ctr Admin Info Tech, 2-1 Minamijosanjimacho, Tokushima 7700814, Japan
来源
关键词
homoclinic bifurcation; logistic map; global bifurcation; Feigenbaum constants;
D O I
10.1587/nolta.13.209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we have developed the method to obtain the homoclinic bifurcation parameter of an arbitrary targeted fixed point in the logistic map T-r. We have considered the geometrical structure of T-r around x = 0.5 and derived the core condition of the bifurcation occurrence. As the result of numerical experiment, we have calculated the exact bifurcation parameter of the fixed point of T-r(l) with l <= 256. We have also discussed the Feigenbaum constants found in the bifurcation parameter and the fixed point coordinate sequences. This fact implies the local stability of the fixed point and global structure around it are in association via the constants.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [1] ON THE BIFURCATION IN A MODULATED LOGISTIC MAP
    HUANG, WH
    PHYSICS LETTERS A, 1994, 194 (1-2) : 57 - 58
  • [2] BIFURCATION AND FRACTAL OF THE COUPLED LOGISTIC MAP
    Wang, Xingyuan
    Luo, Chao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (24): : 4275 - 4290
  • [3] ON THE BIFURCATION IN A MODULATED LOGISTIC MAP - COMMENT
    JOY, MP
    PHYSICS LETTERS A, 1995, 202 (2-3) : 237 - 239
  • [4] The complete bifurcation diagram for the logistic map
    Tsuchiya, T
    Yamagishi, D
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (6-7): : 513 - 516
  • [5] Bifurcation and Chaos in the Logistic Map with Memory
    Alonso-Sanz, Ramon
    Carlos Losada, Juan
    Porras, Miguel A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (12):
  • [6] POLYNOMIALS OF THE BIFURCATION POINTS OF THE LOGISTIC MAP
    Blackhurst, Jonathan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07): : 1869 - 1877
  • [7] Bifurcation analysis of the logistic map via two periodic impulsive forces
    Jiang Hai-Bo
    Li Tao
    Zeng Xiao-Liang
    Zhang Li-Ping
    CHINESE PHYSICS B, 2014, 23 (01)
  • [8] Bifurcation analysis of the logistic map via two periodic impulsive forces
    姜海波
    李涛
    曾小亮
    张丽萍
    Chinese Physics B, 2014, 23 (01) : 116 - 122
  • [9] Accumulation and bifurcation points of the discontinuous logistic map
    Chia, T. T.
    Tan, B. L.
    Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 1995, 50 (07):
  • [10] ACCUMULATION AND BIFURCATION POINTS OF THE DISCONTINUOUS LOGISTIC MAP
    CHIA, TT
    TAN, BL
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1995, 50 (07): : 677 - 683