Potential distribution modelling using machine learning

被引:0
|
作者
Lorena, Ana C. [1 ]
de Siqueira, Marinez F. [2 ]
De Giovanni, Renato
de Carvalho, Andre C. P. L. F. [3 ]
Prati, Ronaldo C. [3 ]
机构
[1] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Santo Andre, SP, Brazil
[2] Ctr Referencia Inform Ambiental, Campinas, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencia Math Comp, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ecological niche modelling; potential distribution modelling; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Potential distribution modelling has been widely used to predict and to understand the geographical distribution of species. These models are generally produced by retrieving the environmental conditions where the species is known to be present or absent and feeding this data into a modelling algorithm. This paper investigates the use of Machine Learning techniques in the potential distribution modelling of plant species Stryphnodendron obovatum Benth (MIMOSACEAE). Three techniques were used: Support Vector Machines, Genetic Algorithms and Decision Trees. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species being considered.
引用
收藏
页码:255 / +
页数:3
相关论文
共 50 条
  • [41] Exploring the Potential of Machine Learning in Stochastic Reliability Modelling for Reinforced Soil Foundations
    Raja, Muhammad Nouman Amjad
    Abdoun, Tarek
    El-Sekelly, Waleed
    BUILDINGS, 2024, 14 (04)
  • [42] WIND ENERGY POTENTIAL ASSESSMENT BASED ON WIND DIRECTION MODELLING AND MACHINE LEARNING
    Kromer, P.
    Misak, S.
    Stuchly, J.
    Platos, J.
    NEURAL NETWORK WORLD, 2016, 26 (06) : 519 - 538
  • [43] Machine learning algorithms for modeling the potential distribution habitat of tree species
    Carvalho, Monica Canaan
    de Jesus Franca, Luciano Cavalcante
    Leite e Lopes, Isaira
    Araujo, Lais Almeida
    de Mello, Jose Marcio
    Gomide, Lucas Rezende
    NATIVA, 2019, 7 (05): : 600 - 606
  • [44] A machine learning potential construction based on radial distribution function sampling
    Watanabe, Natsuki
    Hori, Yuta
    Sugisawa, Hiroki
    Ida, Tomonori
    Shoji, Mitsuo
    Shigeta, Yasuteru
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, : 2949 - 2958
  • [45] A Machine Learning Approach to Event Analysis in Distribution Feeders Using Distribution Synchrophasors
    Shahsavari, Alireza
    Farajollahi, Mohammad
    Stewart, Emma
    Cortez, Ed
    Mohsenian-Rad, Hamed
    2019 INTERNATIONAL CONFERENCE ON SMART GRID SYNCHRONIZED MEASUREMENTS AND ANALYTICS (SGSMA), 2019,
  • [46] Predictive Modelling for Concrete Failure at Anchorages Using Machine Learning Techniques
    Spyridis, Panagiotis
    Olalusi, Oladimeji B.
    MATERIALS, 2021, 14 (01) : 1 - 22
  • [47] Modelling for forecasting energy consumption using SBO optimization and machine learning
    Vidhate, Kalpana D.
    Nema, Pragya
    Hasarmani, Totappa
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (02): : 605 - 612
  • [48] Spatiotemporal modelling of rainfall-induced landslides using machine learning
    C. W. W. Ng
    B. Yang
    Z. Q. Liu
    J. S. H. Kwan
    L. Chen
    Landslides, 2021, 18 : 2499 - 2514
  • [49] System Identification and Process Modelling of Dynamic Systems Using Machine Learning
    Inapakurthi, Ravi Kiran
    Mitra, Kishalay
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 564 - 569
  • [50] Leptospirosis modelling using hydrometeorological indices and random forest machine learning
    Jayaramu, Veianthan
    Zulkafli, Zed
    De Stercke, Simon
    Buytaert, Wouter
    Rahmat, Fariq
    Rahman, Ribhan Zafira Abdul
    Ishak, Asnor Juraiza
    Tahir, Wardah
    Ab Rahman, Jamalludin
    Fuzi, Nik Mohd Hafiz Mohd
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2023, 67 (03) : 423 - 437