Potential distribution modelling using machine learning

被引:0
|
作者
Lorena, Ana C. [1 ]
de Siqueira, Marinez F. [2 ]
De Giovanni, Renato
de Carvalho, Andre C. P. L. F. [3 ]
Prati, Ronaldo C. [3 ]
机构
[1] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Santo Andre, SP, Brazil
[2] Ctr Referencia Inform Ambiental, Campinas, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencia Math Comp, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ecological niche modelling; potential distribution modelling; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Potential distribution modelling has been widely used to predict and to understand the geographical distribution of species. These models are generally produced by retrieving the environmental conditions where the species is known to be present or absent and feeding this data into a modelling algorithm. This paper investigates the use of Machine Learning techniques in the potential distribution modelling of plant species Stryphnodendron obovatum Benth (MIMOSACEAE). Three techniques were used: Support Vector Machines, Genetic Algorithms and Decision Trees. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species being considered.
引用
收藏
页码:255 / +
页数:3
相关论文
共 50 条
  • [21] Predictive modelling and analytics for diabetes using a machine learning approach
    Kaur, Harleen
    Kumari, Vinita
    APPLIED COMPUTING AND INFORMATICS, 2022, 18 (1/2) : 90 - 100
  • [22] Efficient modelling of compact microstrip antenna using machine learning
    Sharma, Kanhaiya
    Pandey, Ganga Prasad
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 135
  • [23] A framework for community noise modelling using machine learning methods
    Zhang, Wenzu
    Liu, Enxiao
    Png, Jason C. E.
    APPLIED ACOUSTICS, 2020, 157 (157)
  • [24] Modelling of pome fruit pollen performance using machine learning
    Sultan Filiz Güçlü
    Scientific Reports, 15 (1)
  • [25] Imaging and seismic modelling inside volcanoes using machine learning
    O'Brien, Gareth Shane
    Bean, Christopher J.
    Meiland, Hugo
    Witte, Philipp
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [26] Extreme Precipitation Modelling Using Geostatistics and Machine Learning Algorithms
    Foresti, Loris
    Pozdnoukhov, Alexei
    Tuia, Devis
    Kanevski, Mikhail
    GEOENV VII - GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS, 2010, 16 : 41 - 52
  • [27] Imaging and seismic modelling inside volcanoes using machine learning
    Gareth Shane O’Brien
    Christopher J. Bean
    Hugo Meiland
    Philipp Witte
    Scientific Reports, 13 (1)
  • [28] Modelling membrane curvature generation using mechanics and machine learning
    Malingen, S. A.
    Rangamani, P.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (194)
  • [29] Modelling Photovoltaic power output using Machine Learning techniques
    May, Siyasanga Innocent
    Bokoro, Pitshou
    Pratt, Lawrence
    Roro, Kittessa
    2022 IEEE PES/IAS POWERAFRICA CONFERENCE, 2022, : 350 - 354
  • [30] PREDICTING MALARIA ELIMINATION USING MATHEMATICAL MODELLING AND MACHINE LEARNING
    Reiker, Theresa
    Golumbeanu, Monica
    Winkel, Munir
    Pothin, Emilie
    Chitnis, Nakul
    Smith, Thomas A.
    Penny, Melissa
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 509 - 509