Potential distribution modelling using machine learning

被引:0
|
作者
Lorena, Ana C. [1 ]
de Siqueira, Marinez F. [2 ]
De Giovanni, Renato
de Carvalho, Andre C. P. L. F. [3 ]
Prati, Ronaldo C. [3 ]
机构
[1] Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Santo Andre, SP, Brazil
[2] Ctr Referencia Inform Ambiental, Campinas, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencia Math Comp, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ecological niche modelling; potential distribution modelling; machine learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Potential distribution modelling has been widely used to predict and to understand the geographical distribution of species. These models are generally produced by retrieving the environmental conditions where the species is known to be present or absent and feeding this data into a modelling algorithm. This paper investigates the use of Machine Learning techniques in the potential distribution modelling of plant species Stryphnodendron obovatum Benth (MIMOSACEAE). Three techniques were used: Support Vector Machines, Genetic Algorithms and Decision Trees. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species being considered.
引用
收藏
页码:255 / +
页数:3
相关论文
共 50 条
  • [1] Comparing machine learning classifiers in potential distribution modelling
    Lorena, Ana C.
    Jacintho, Luis F. O.
    Siqueira, Marinez F.
    De Giovanni, Renato
    Lohmann, Lucia G.
    de Carvalho, Andre C. P. L. F.
    Yamamoto, Missae
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 5268 - 5275
  • [2] Habitat potential modelling and mapping of Teucrium polium using machine learning techniques
    Rahmanian, Soroor
    Pourghasemi, Hamid Reza
    Pouyan, Soheila
    Karami, Sahar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (11)
  • [3] Habitat potential modelling and mapping of Teucrium polium using machine learning techniques
    Soroor Rahmanian
    Hamid Reza Pourghasemi
    Soheila Pouyan
    Sahar Karami
    Environmental Monitoring and Assessment, 2021, 193
  • [4] Modelling and Classification of Sepsis using Machine Learning
    Amrita, I
    Martis, Roshan Joy
    Ashwini, K.
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 262 - 266
  • [5] Modelling cryptographic distinguishers using machine learning
    Carlo Brunetta
    Pablo Picazo-Sanchez
    Journal of Cryptographic Engineering, 2022, 12 : 123 - 135
  • [6] Human dialogue modelling using machine learning
    Wilks, Y
    Webb, N
    Setzer, A
    Hepple, M
    Catizone, R
    Recent Advances in Natural Language Processing III, 2004, 260 : 17 - 28
  • [7] Modelling cryptographic distinguishers using machine learning
    Brunetta, Carlo
    Picazo-Sanchez, Pablo
    JOURNAL OF CRYPTOGRAPHIC ENGINEERING, 2022, 12 (02) : 123 - 135
  • [8] DISTRIBUTION RELIABILITY USING MACHINE LEARNING
    Skow, Jason
    McPherson, Rob
    Schoenroth, Kent
    PROCEEDINGS OF THE ASME 2020 13TH INTERNATIONAL PIPELINE CONFERENCE (IPC2020), VOL 1, 2020,
  • [9] Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations
    Frueh, Linus
    Kampen, Helge
    Kerkow, Antje
    Schaub, Guenter A.
    Walther, Doreen
    Wieland, Ralf
    ECOLOGICAL MODELLING, 2018, 388 : 136 - 144
  • [10] Evaporation modelling using different machine learning techniques
    Wang, Lunche
    Kisi, Ozgur
    Hu, Bo
    Bilal, Muhammad
    Zounemat-Kermani, Mohammad
    Li, Hui
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017, 37 : 1076 - 1092