Thermal resistance of nanowire-plane interfaces

被引:44
|
作者
Bahadur, V [1 ]
Xu, J [1 ]
Liu, Y [1 ]
Fisher, TS [1 ]
机构
[1] Purdue Univ, Sch Mech Engn & Birck, Nanotechnol Ctr, W Lafayette, IN 47907 USA
来源
关键词
thermal contact resistance; nanowire; constriction; van der Waals force;
D O I
10.1115/1.1865217
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper employs continuum principles combined with van der Waals theory to estimate the thermal contact resistance between nanowires and planar substrates. This resistance is modeled using elastic deformation theory and thermal resistance relations. The contact force between a nanowire and substrate is obtained through a calculation of the van der Waals interaction energy between the two. The model estimates numerical values of constriction and gap resistances for several nanowire-substrate combinations with water and air as the surrounding media. The total interface resistance is almost equal to the gap resistance when the surrounding medium has a high thermal conductivity. For a low-conductivity medium, the interface resistance is dominated by the constriction resistance, which itself depends significantly on nanowire and substrate conductivities. A trend observed in all calculations is that the interface resistance increases with smaller nanowires, showing that interface resistance will be a significant parameter in the design and performance of nanoelectronic devices.
引用
收藏
页码:664 / 668
页数:5
相关论文
共 50 条
  • [41] Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices
    Yates, Luke
    Anderson, Jonathan
    Gu, Xing
    Lee, Cathy
    Bai, Tingyu
    Mecklenburg, Matthew
    Aoki, Toshihiro
    Goorsky, Mark S.
    Kuball, Martin
    Piner, Edwin L.
    Graham, Samuel
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) : 24302 - 24309
  • [42] Hierarchically nested channels for fast squeezing interfaces with reduced thermal resistance
    Brunschwiler, T
    Kloter, U
    Linderman, R
    Rothuizen, H
    Michel, B
    TWENTY-FIRST ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2005, 2005, : 31 - 38
  • [43] Hierarchically nested channels for fast squeezing interfaces with reduced thermal resistance
    Brunschwiler, Thomas
    Kloter, Urs
    Linderman, Ryan J.
    Rothuizen, Hugo
    Michel, Bruno
    IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2007, 30 (02): : 226 - 234
  • [44] Electron thermal conductance in a ballistic nanowire in the presence of Rashba interaction and an in-plane magnetic field
    Koeik, Zeinab
    Sakr, M. R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 74 : 527 - 530
  • [45] The thermal contact resistance between the solid interfaces at low temperature and vacuum
    Xu, L
    Zhang, T
    Xiong, W
    Zhao, LP
    CRYOGENICS AND REFRIGERATION - PROCEEDINGS OF ICCR 98, 1998, : 321 - 324
  • [46] THERMAL RESISTANCE OF SILICON/GERMANIUM INTERFACES FROM LATTICE DYNAMICS CALCULATIONS
    Landry, E. S.
    McGaughey, A. J. H.
    HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 2, 2009, : 29 - 32
  • [47] Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces
    Termentzidis, Konstantinos
    Chantrenne, Patrice
    Keblinski, Pawel
    PHYSICAL REVIEW B, 2009, 79 (21):
  • [48] MOLECULAR DYNAMICS SIMULATION OF THE THERMAL RESISTANCE OF CARBON NANOTUBE - SUBSTRATE INTERFACES
    Rogers, Daniel J.
    Qu, Jianmin
    Yao, Matthew
    IPACK 2009: PROCEEDINGS OF THE ASME INTERPACK CONFERENCE 2009, VOL 2, 2010, : 55 - 61
  • [49] Compressive mechanical response of graphene foams and their thermal resistance with copper interfaces
    Park, Wonjun
    Li, Xiangyu
    Mandal, Nirajan
    Ruan, Xiulin
    Chen, Yong P.
    APL MATERIALS, 2017, 5 (03):
  • [50] Thermal resistance of interfaces in AlN-diamond thin film composites
    Jagannadham, K
    Wang, H
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (03) : 1224 - 1235