Adaptive Inference for Multi-Stage Survey Data

被引:3
|
作者
Al-Zou'bi, Loai Mahmoud [1 ]
Clark, Robert Graham [1 ]
Steel, David G. [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Ctr Stat & Survey Methodol, Wollongong, NSW 2522, Australia
关键词
Adaptive estimation; Cluster sampling; Huber-White variance estimator; Multi-level models; Variance components; LIKELIHOOD RATIO TESTS; SAMPLE; ESTIMATORS; DESIGNS;
D O I
10.1080/03610918.2010.493273
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multi-level models can be used to account for clustering in data from multi-stage surveys. In some cases, the intraclass correlation may be close to zero, so that it may seem reasonable to ignore clustering and fit a single-level model. This article proposes several adaptive strategies for allowing for clustering in regression analysis of multi-stage survey data. The approach is based on testing whether the PSU-level variance component is zero. If this hypothesis is retained, then variance estimates are calculated ignoring clustering; otherwise, clustering is reflected in variance estimation. A simple simulation study is used to evaluate the various procedures.
引用
收藏
页码:1334 / 1350
页数:17
相关论文
共 50 条
  • [21] Multi-stage Prediction Networks for Data Harmonization
    Blumberg, Stefano B.
    Palombo, Marco
    Khoo, Can Son
    Tax, Chantal M. W.
    Tanno, Ryutaro
    Alexander, Daniel C.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 411 - 419
  • [22] Control of multi-stage flash desalination plants: A survey
    Ismail, A
    DESALINATION, 1998, 116 (2-3) : 145 - 155
  • [23] Multi-Stage Activity Inference for Locomotion and Transportation Analytics of Mobile Users
    Nakamura, Yugo
    Umetsu, Yoshinori
    Talusan, Jose Paolo
    Yasumoto, Keiichi
    Sasaki, Wataru
    Takata, Masashi
    Arakawa, Yutaka
    PROCEEDINGS OF THE 2018 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC'18 ADJUNCT), 2018, : 1579 - 1588
  • [24] A bi-tree multi-stage inference fuzzy control system
    Yeh, ZM
    Chen, HP
    SOFT COMPUTING IN INTELLIGENT SYSTEMS AND INFORMATION PROCESSING, 1996, : 55 - 60
  • [25] Extended Fuzzy Petri Net for multi-stage fuzzy logic inference
    Chen, HP
    Yeh, ZM
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 441 - 446
  • [26] Adaptive multi-stage integration schemes for Hamiltonian Monte Carlo
    Nagar, Lorenzo
    Fernandez-Pendas, Mario
    Sanz-Serna, Jesus Maria
    Akhmatskaya, Elena
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 502
  • [27] Adaptive multi-stage NMPC using sigma point principles
    Thangavel, Sakthi
    Paulen, Radoslav
    Engell, Sebastian
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 196 - 201
  • [28] Multi-stage adaptive search vector quantization for image compression
    Refai, W
    HYBRID IMAGE AND SIGNAL PROCESSING V, 1996, 2751 : 50 - 55
  • [29] A multi-stage coupling adaptive method for thermochemical nonequilibrium gas
    Li, Peng
    Chen, Jianqiang
    Ding, Mingsong
    Jiang, Tao
    Mei, Jie
    Fu, Yang'aoxiao
    Dong, Weizhong
    COMPUTERS & FLUIDS, 2023, 261
  • [30] Multi-stage regulation, a key to reliable adaptive biochemical pathways
    Almogy, G
    Stone, L
    Ben-Tal, N
    BIOPHYSICAL JOURNAL, 2001, 81 (06) : 3016 - 3028