Multi-stage Prediction Networks for Data Harmonization

被引:13
|
作者
Blumberg, Stefano B. [1 ,2 ]
Palombo, Marco [1 ,2 ]
Khoo, Can Son [1 ,2 ]
Tax, Chantal M. W. [3 ]
Tanno, Ryutaro [1 ,2 ]
Alexander, Daniel C. [1 ,2 ]
机构
[1] Univ Coll London UCL, Dept Comp Sci, London, England
[2] Univ Coll London UCL, Ctr Med Image Comp, London, England
[3] Cardiff Univ, Cardiff Univ Brain Res Imaging Ctr CUBRIC, Cardiff, S Glam, Wales
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Data harmonization; Deep learning; Diffusion magnetic resonance imaging; Multi-task learning; Transfer learning; DIFFUSION MRI DATA;
D O I
10.1007/978-3-030-32251-9_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce multi-task learning (MTL) to data harmonization (DH); where we aim to harmonize images across different acquisition platforms and sites. This allows us to integrate information from multiple acquisitions and improve the predictive performance and learning efficiency of the harmonization model. Specifically, we introduce the Multi Stage Prediction (MSP) Network, a MTL framework that incorporates neural networks of potentially disparate architectures, trained for different individual acquisition platforms, into a larger architecture that is refined in unison. The MSP utilizes high-level features of single networks for individual tasks, as inputs of additional neural networks to inform the final prediction, therefore exploiting redundancy across tasks to make the most of limited training data. We validate our methods on a dMRI harmonization challenge dataset, where we predict three modern platform types, from one obtained from an old scanner. We show how MTL architectures, such as the MSP, produce around 20% improvement of patch-based mean-squared error over current state-of-the-art methods and that our MSP outperforms off-the-shelf MTL networks. Our code is available [1].
引用
收藏
页码:411 / 419
页数:9
相关论文
共 50 条
  • [1] Multi-stage cascaded prediction
    Driesen, K
    Hölzle, U
    [J]. EURO-PAR'99: PARALLEL PROCESSING, 1999, 1685 : 1312 - 1321
  • [2] Dynamics of Multi-stage Infections on Networks
    Sherborne, N.
    Blyuss, K. B.
    Kiss, I. Z.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (10) : 1909 - 1933
  • [3] Dynamics of Multi-stage Infections on Networks
    N. Sherborne
    K. B. Blyuss
    I. Z. Kiss
    [J]. Bulletin of Mathematical Biology, 2015, 77 : 1909 - 1933
  • [4] A Scalable Multi-Stage Packet-Switch for Data Center Networks
    Hassen, Fadoua
    Mhamdi, Lotfi
    [J]. JOURNAL OF COMMUNICATIONS AND NETWORKS, 2017, 19 (01) : 65 - 79
  • [5] Multi-Stage Harmonization for Robust AI across Breast MR Databases
    Whitney, Heather M.
    Li, Hui
    Ji, Yu
    Liu, Peifang
    Giger, Maryellen L.
    [J]. CANCERS, 2021, 13 (19)
  • [6] Multi-stage attention spatial-temporal graph networks for traffic prediction
    Yin, Xueyan
    Wu, Genze
    Wei, Jinze
    Shen, Yanming
    Qi, Heng
    Yin, Baocai
    [J]. NEUROCOMPUTING, 2021, 428 : 42 - 53
  • [7] COMPOUND IMAGE COMPRESSION BY MULTI-STAGE PREDICTION
    Zhu, Weijia
    Ding, Wenpeng
    Xiong, Ruiqin
    Shi, Yuhui
    Yin, Baocai
    [J]. 2012 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2012,
  • [8] Multi-stage opinion maximization in social networks
    He, Qiang
    Wang, Xingwei
    Huang, Min
    Yi, Bo
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19): : 12367 - 12380
  • [9] Heuristics for multi-stage interdiction of stochastic networks
    Held, H
    Woodruff, D
    [J]. JOURNAL OF HEURISTICS, 2005, 11 (5-6) : 483 - 500
  • [10] Heuristics for Multi-Stage Interdiction of Stochastic Networks
    Harald Held
    David L. Woodruff
    [J]. Journal of Heuristics, 2005, 11 : 483 - 500