Bayesian Estimation for the Exponentiated Weibull Model via Markov Chain Monte Carlo Simulation

被引:21
|
作者
Jaheen, Zeinhum F. [1 ]
Al Harbi, Mashail M. [2 ]
机构
[1] King Abdulaziz Univ, Dept Stat, Jeddah 21589, Saudi Arabia
[2] Umm Al Qura Univ, Dept Math, Appl Sci Coll, Mecca, Saudi Arabia
关键词
Balanced loss function; Bayes estimation; Exponentiated-Weibull model; Generalized order statistics; Markov chain Monte Carlo (MCMC); GENERAL-CLASS; DISTRIBUTIONS; FAMILY; PARAMETERS;
D O I
10.1080/03610918.2010.546543
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bayesian estimation for the two unknown parameters and the reliability function of the exponentiated Weibull model are obtained based on generalized order statistics. Markov chain Monte Carlo (MCMC) methods are considered to compute the Bayes estimates of the target parameters. Our computations are based on the balanced loss function which contains the symmetric and asymmetric loss functions as special cases. The results have been specialized to the progressively Type-II censored data and upper record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.
引用
收藏
页码:532 / 543
页数:12
相关论文
共 50 条
  • [31] Bayesian modeling of time trends in component reliability data via Markov chain Monte Carlo simulation
    Kelly, D. L.
    [J]. RISK, RELIABILITY AND SOCIETAL SAFETY, VOLS 1-3: VOL 1: SPECIALISATION TOPICS; VOL 2: THEMATIC TOPICS; VOL 3: APPLICATIONS TOPICS, 2007, : 1985 - 1990
  • [32] Bayesian analysis of nested logit model by Markov chain Monte Carlo
    Lahiri, K
    Gao, J
    [J]. JOURNAL OF ECONOMETRICS, 2002, 111 (01) : 103 - 133
  • [33] More Stable Estimation of the STARTS Model: A Bayesian Approach Using Markov Chain Monte Carlo Techniques
    Ludtke, Oliver
    Robitzsch, Alexander
    Wagner, Jenny
    [J]. PSYCHOLOGICAL METHODS, 2018, 23 (03) : 570 - 593
  • [34] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478
  • [35] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [36] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    [J]. MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [37] Bayesian generalised ensemble Markov chain Monte Carlo
    Frellsen, Jes
    Winther, Ole
    Ghahramani, Zoubin
    Ferkinghoff-Borg, Jesper
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 408 - 416
  • [38] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    [J]. FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47
  • [39] Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling
    Jasper A. Vrugt
    Cees G. H. Diks
    Martyn P. Clark
    [J]. Environmental Fluid Mechanics, 2008, 8 : 579 - 595
  • [40] Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    Green, PJ
    [J]. BIOMETRIKA, 1995, 82 (04) : 711 - 732