On the ruin time distribution for a Sparre Andersen process with exponential claim sizes

被引:46
|
作者
Borovkov, Konstantin A. [2 ]
Dickson, David C. M. [1 ]
机构
[1] Univ Melbourne, Dept Econ, Ctr Actuarial Studies, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
INSURANCE MATHEMATICS & ECONOMICS | 2008年 / 42卷 / 03期
关键词
Sparre Andersen model; time of ruin; exponential claims;
D O I
10.1016/j.insmatheco.2008.02.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
We derive a closed-form (infinite series) representation for the distribution of the ruin time for the Sparre Andersen model with exponentially distributed claims. This extends a recent result of Dickson et al. [Dickson, D.C.M., Hughes, B.D., Zhang, L., 2005. The density of the time to ruin for a Sparre Andersen process with Erlang arrivals and exponential claims. Scand. Actuar. J., 358-376] for such processes with Erlang inter-claim times. The derivation is based on transforming the original boundary crossing problem to an equivalent one on linear lower boundary crossing by a spectrally positive Levy process. We illustrate our result in the cases of gamma, mixed exponential and inverse Gaussian inter-claim time distributions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1108
页数:5
相关论文
共 50 条
  • [41] Simulation analysis of ruin capital in Sparre Andersen's model of risk
    Malinovskii, Vsevolod K.
    Kosova, Ksenia O.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2014, 59 : 184 - 193
  • [42] Ruin probabilities for a Sparre Andersen model with investments: the case of annuity payments
    Yuri Kabanov
    Platon Promyslov
    [J]. Finance and Stochastics, 2023, 27 : 887 - 902
  • [43] LUNDBERG-TYPE BOUNDS FOR THE JOINT DISTRIBUTION OF SURPLUS IMMEDIATELY BEFORE AND AT RUIN UNDER THE SPARRE ANDERSEN MODEL
    Ng, Andrew
    Yang, Hailiang
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2005, 9 (02) : 85 - 100
  • [44] The joint density of the surplus before and after ruin in the Sparre Andersen model.
    Pitts, Susan M.
    Politis, Konstadinos
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2006, 39 (03): : 407 - 407
  • [45] A ruin model with dependence between claim sizes and claim intervals
    Albrecher, H
    Boxma, OJ
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2004, 35 (02): : 245 - 254
  • [46] Ruin time and aggregate claim amount up to ruin time for the perturbed risk process
    Rabehasaina, Landy
    Tsai, Cary Chi-Liang
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2013, (03) : 186 - 212
  • [47] Ruin probabilities in a Sparre Andersen model with dependency structure based on a threshold window
    Cheung, Eric C. K.
    Dai, Suhang
    Ni, Weihong
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2018, 12 (02) : 269 - 295
  • [48] SPARRE ANDERSEN IDENTITY AND THE LAST PASSAGE TIME
    Ivanovs, Jevgenijs
    [J]. JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 600 - 605
  • [49] Ruin Analysis of a Discrete-Time Dependent Sparre Andersen Model with External Financial Activities and Randomized Dividends
    Kim, Sung Soo
    Drekic, Steve
    [J]. RISKS, 2016, 4 (01)
  • [50] On the occupation times in a delayed Sparre Andersen risk model with exponential claims
    Jin, Can
    Li, Shuanming
    Wu, Xueyuan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2016, 71 : 304 - 316