On the ruin time distribution for a Sparre Andersen process with exponential claim sizes

被引:46
|
作者
Borovkov, Konstantin A. [2 ]
Dickson, David C. M. [1 ]
机构
[1] Univ Melbourne, Dept Econ, Ctr Actuarial Studies, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
来源
INSURANCE MATHEMATICS & ECONOMICS | 2008年 / 42卷 / 03期
关键词
Sparre Andersen model; time of ruin; exponential claims;
D O I
10.1016/j.insmatheco.2008.02.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
We derive a closed-form (infinite series) representation for the distribution of the ruin time for the Sparre Andersen model with exponentially distributed claims. This extends a recent result of Dickson et al. [Dickson, D.C.M., Hughes, B.D., Zhang, L., 2005. The density of the time to ruin for a Sparre Andersen process with Erlang arrivals and exponential claims. Scand. Actuar. J., 358-376] for such processes with Erlang inter-claim times. The derivation is based on transforming the original boundary crossing problem to an equivalent one on linear lower boundary crossing by a spectrally positive Levy process. We illustrate our result in the cases of gamma, mixed exponential and inverse Gaussian inter-claim time distributions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1108
页数:5
相关论文
共 50 条