Attribute-Decomposable Motion Compression Network for 3D MoCap Data

被引:0
|
作者
Chen, Zengming [2 ]
Bai, Junxuan [1 ,2 ]
Dai, Ju [1 ]
机构
[1] Peng Cheng Lab, 2 Xingke 1st St, Shenzhen, Peoples R China
[2] Beihang Univ, 37 Xueyuan Rd, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1109/DCC52660.2022.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motion Capture (MoCap) data is one type of fundamental asset for the digital entertainment. The progressively increasing 3D applications make MoCap data compression unprecedentedly important. In this paper, we propose an end-to-end attribute-decomposable motion compression network using the AutoEncoder architecture. Specifically, the algorithm consists of an LSTM-based encoder-decoder for compression and decompression. The encoder module decomposes human motion into multiple uncorrelated semantic attributes, including action content, arm space, and motion mirror. The decoder module is responsible for reconstructing vivid motion based on the decomposed high-level characteristics. Our method is computationally efficient with powerful compression ability, outperforming the state-of-the-art methods in terms of compression rate and compression error. Furthermore, our model can generate new motion data given a combination of different motion attributes while existing methods have no such capability.
引用
收藏
页码:302 / 311
页数:10
相关论文
共 50 条
  • [21] Data compression of integral images for 3D TV
    Aggoun, A.
    Tabit, M.
    2007 3DTV CONFERENCE, 2007, : 342 - 345
  • [22] HYBRID COMPRESSION OF DYNAMIC 3D MESH DATA
    Kwak, Choong-Hoon
    Bajic, Ivan V.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [23] Science-driven 3D data compression
    Alonso, David
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (04) : 4306 - 4317
  • [24] Action recognition with motion map 3D network
    Sun, Yuchao
    Wu, Xinxiao
    Yu, Wennan
    Yu, Feiwu
    NEUROCOMPUTING, 2018, 297 : 33 - 39
  • [25] 3D Motion Reconstruction From 2D Motion Data Using Multimodal Conditional Deep Belief Network
    Heydari, Muhammad Javad
    Ghidary, Saeed Shiry
    IEEE ACCESS, 2019, 7 : 56389 - 56408
  • [26] Data Compression Method for Road 3D Scene Real-time Network Transmission
    Li, Wei
    Pu, Hao
    Zhao, Haifeng
    Cai, Yichang
    MATERIALS, TRANSPORTATION AND ENVIRONMENTAL ENGINEERING, PTS 1 AND 2, 2013, 779-780 : 1817 - 1821
  • [27] 3D motion estimation for depth information compression in 3D-TV applications
    Kamolrat, B.
    Fernando, W. A. C.
    Mrak, M.
    ELECTRONICS LETTERS, 2008, 44 (21) : 1244 - 1245
  • [28] Best-Effort Projection Based Attribute Compression for 3D Point Cloud
    He, Lanyi
    Zhu, Wenjie
    Xu, Yiling
    2017 23RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC): BRIDGING THE METROPOLITAN AND THE REMOTE, 2017, : 345 - 350
  • [29] Motion Compensated Video Compression with 3D Wavelet Transform and SPIHT
    Enyedi, Balazs
    Konyha, Lajos
    Fazekas, Kalman
    RADIOENGINEERING, 2006, 15 (01) : 42 - 46
  • [30] Improving 3D Indoor Mapping with Motion Data
    Du, Jianhao
    Ou, Yongsheng
    Sheng, Weihua
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,