Attribute-Decomposable Motion Compression Network for 3D MoCap Data

被引:0
|
作者
Chen, Zengming [2 ]
Bai, Junxuan [1 ,2 ]
Dai, Ju [1 ]
机构
[1] Peng Cheng Lab, 2 Xingke 1st St, Shenzhen, Peoples R China
[2] Beihang Univ, 37 Xueyuan Rd, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1109/DCC52660.2022.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motion Capture (MoCap) data is one type of fundamental asset for the digital entertainment. The progressively increasing 3D applications make MoCap data compression unprecedentedly important. In this paper, we propose an end-to-end attribute-decomposable motion compression network using the AutoEncoder architecture. Specifically, the algorithm consists of an LSTM-based encoder-decoder for compression and decompression. The encoder module decomposes human motion into multiple uncorrelated semantic attributes, including action content, arm space, and motion mirror. The decoder module is responsible for reconstructing vivid motion based on the decomposed high-level characteristics. Our method is computationally efficient with powerful compression ability, outperforming the state-of-the-art methods in terms of compression rate and compression error. Furthermore, our model can generate new motion data given a combination of different motion attributes while existing methods have no such capability.
引用
收藏
页码:302 / 311
页数:10
相关论文
共 50 条
  • [11] 3D Point Cloud Attribute Compression Based on Cylindrical Projection
    Li, Zhe
    He, Lanyi
    Zhu, Wenjie
    Xu, Yiling
    Sun, Jun
    Yang, Le
    2019 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2019,
  • [12] Adaptive compression for 3D laser data
    Smith, Mike
    Posner, Ingmar
    Newman, Paul
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (07): : 914 - 935
  • [13] Mirror MoCap: Automatic and efficient capture of dense 3D facial motion parameters from video
    I-Chen Lin
    Ming Ouhyoung
    The Visual Computer, 2005, 21 : 355 - 372
  • [14] Mirror MoCap: Automatic and efficient capture of dense 3D facial motion parameters from video
    Lin, IC
    Ouhyoung, M
    VISUAL COMPUTER, 2005, 21 (06): : 355 - 372
  • [15] Network Streaming of Dynamic 3D Content with On-line Compression of Frame Data
    Marino, Giuseppe
    Gasparello, Paolo Simone
    Vercelli, Davide
    Tecchia, Franco
    Bergamasco, Massimo
    IEEE VIRTUAL REALITY 2010, PROCEEDINGS, 2010, : 285 - 286
  • [16] Serialization of a 3D Human Body based on MoCap Data in a BVH File for Sequence Comparison
    Abarca-Jimenez, Natalia
    Siles-Canales, Francisco
    TECNOLOGIA EN MARCHA, 2020, 33 : 85 - 90
  • [17] Motion-compensated compression of 3D animation models
    Ahn, JH
    Kim, CS
    Kuo, CCJ
    Ho, YS
    ELECTRONICS LETTERS, 2001, 37 (24) : 1445 - 1446
  • [18] Unsupervised Learning for 3D Ultrasonic Data Compression
    Zhang, Xin
    Saniie, Jafar
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [19] Lossless compression of 3D MRI and CT data
    Klappenecker, A
    May, FU
    Beth, T
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VI, 1998, 3458 : 140 - 149
  • [20] New method for 3D multispectral data compression
    Yan, Jingwen
    Qian, Shenen
    Sun, Hui
    Zhang, Shenghua
    Qi, Lei
    Guangxue Xuebao/Acta Optica Sinica, 1997, 17 (03): : 298 - 303