Attribute-Decomposable Motion Compression Network for 3D MoCap Data

被引:0
|
作者
Chen, Zengming [2 ]
Bai, Junxuan [1 ,2 ]
Dai, Ju [1 ]
机构
[1] Peng Cheng Lab, 2 Xingke 1st St, Shenzhen, Peoples R China
[2] Beihang Univ, 37 Xueyuan Rd, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1109/DCC52660.2022.00038
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motion Capture (MoCap) data is one type of fundamental asset for the digital entertainment. The progressively increasing 3D applications make MoCap data compression unprecedentedly important. In this paper, we propose an end-to-end attribute-decomposable motion compression network using the AutoEncoder architecture. Specifically, the algorithm consists of an LSTM-based encoder-decoder for compression and decompression. The encoder module decomposes human motion into multiple uncorrelated semantic attributes, including action content, arm space, and motion mirror. The decoder module is responsible for reconstructing vivid motion based on the decomposed high-level characteristics. Our method is computationally efficient with powerful compression ability, outperforming the state-of-the-art methods in terms of compression rate and compression error. Furthermore, our model can generate new motion data given a combination of different motion attributes while existing methods have no such capability.
引用
收藏
页码:302 / 311
页数:10
相关论文
共 50 条
  • [1] MOTION DEFORMATION STYLE CONTROL TECHNIQUE FOR 3D HUMANOID CHARACTER BY USING MOCAP DATA
    Ismail, Ismahafezi
    Sunar, Mohd Shahrizal
    Kolivand, Hoshang
    JURNAL TEKNOLOGI, 2016, 78 (2-2): : 35 - 40
  • [2] A Divide -and -conquer Solution to 3D Human Motion Estimation from Raw MoCap Data
    Tang, Jilin
    Li, Lincheng
    Hou, Jie
    Xin, Haoran
    Yu, Xin
    2023 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES ABSTRACTS AND WORKSHOPS, VRW, 2023, : 767 - 768
  • [3] 3D precision in mocap
    Nilles, Brian
    COMPUTER GRAPHICS WORLD, 2007, 30 (09) : 12 - 14
  • [4] Adaptive data compression on 3D Network-on-Chips
    He, Yuan
    Matsutani, Hiroki
    Sasaki, Hiroshi
    Nakamura, Hiroshi
    IPSJ Online Transactions, 2012, 5 (2012): : 13 - 20
  • [5] A Clustering Compression Method for 3D Human Motion Capture Data
    Kai, Zhou
    Feng, Tian
    Guo, Hao
    Zhong, Ren
    2014 PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2014), 2014, : 781 - 784
  • [6] A Clustering Compression Method for 3D Human Motion Capture Data
    Zhou, Kai
    Tian, Feng
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2014, 14 (08): : 1 - 4
  • [7] MoCap-guided Data Augmentation for 3D Pose Estimation in the Wild
    Rogez, Gregory
    Schmid, Cordelia
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [8] MEMformer: Transformer-based 3D Human Motion Estimation from MoCap Markers
    Luan, Jinhui
    Jiang, Haiyong
    Diao, Junqi
    Wang, Ying
    Xiao, Jun
    SIGGRAPH ASIA 2022 POSTERS, SA 2022, 2022,
  • [9] Motion Analysis and Performance Improved Method for 3D LiDAR Sensor Data Compression
    Tu, Chenxi
    Takeuchi, Eijiro
    Carballo, Alexander
    Miyajima, Chiyomi
    Takeda, Kazuya
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (01) : 243 - 256
  • [10] 3D Point Cloud Attribute Compression via Graph Prediction
    Gu, Shuai
    Hou, Junhui
    Zeng, Huanqiang
    Yuan, Hui
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 176 - 180