Cut points in metric spaces

被引:6
|
作者
Dress, Andreas W. M. [1 ]
Huber, Katharina T. [2 ]
Koolen, Jacobus [3 ]
Moulton, Vincent [2 ]
机构
[1] CAS MPG Partner Inst Computat Biol, Shanghai 20031, Peoples R China
[2] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[3] POSTECH, Dept Math, Pohang, South Korea
基金
英国工程与自然科学研究理事会;
关键词
tight-span; cut point; metric space; block decomposition; optimal realization;
D O I
10.1016/j.aml.2007.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we will define topological and virtual cut points of finite metric spaces and show that, though their definitions seem to look rather distinct, they actually coincide. More specifically, let X denote a finite set, and let D : X x X -> R : (x, y) -> xy denote a metric defined on X. The tight span T(D) of D consists of all maps f is an element of R-X for which f (x) = sup(y is an element of X) (xy - f (x)) holds for all x is an element of X. Define a map f is an element of T(D) to be a topological cut point of D if T(D) - {f} is disconnected, and define it to be a virtual cut point of D if there exists a bipartition (or split) of the support supp(f) of f into two non-empty sets A and B such that ab = f(a) + f(b) holds for all points a is an element of A and b is an element of B. It will be shown that, for any given metric D, topological and virtual cut points actually coincide, i.e., a map f is an element of T(D) is a topological Cut point of D if and only if it is a virtual cut point of D. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:545 / 548
页数:4
相关论文
共 50 条
  • [1] An algorithm for computing virtual cut points in finite metric spaces
    Dress, Andreas W. M.
    Huber, Katharina T.
    Koolen, Jacobus
    Moulton, Vincent
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 4 - +
  • [2] Local cut points and metric measure spaces with Ricci curvature bounded below
    Watanabe, Masayoshi
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 233 (01) : 229 - 256
  • [3] ON THE FARTHEST POINTS IN CONVEX METRIC SPACES AND LINEAR METRIC SPACES
    Sangeeta
    Narang, T. D.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 229 - 238
  • [4] METRIC SPACES OF EXTREME POINTS
    Manes, Ernie
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 1823 - 1832
  • [5] Metric-like spaces, partial metric spaces and fixed points
    A Amini-Harandi
    Fixed Point Theory and Applications, 2012
  • [6] Metric-like spaces, partial metric spaces and fixed points
    Amini-Harandi, A.
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [7] Fixed Points and Completeness in Metric and Generalized Metric Spaces
    Cobzaş S.
    Journal of Mathematical Sciences, 2020, 250 (3) : 475 - 535
  • [8] Coincidence points in the cases of metric spaces and metric maps
    Thi Hong Van Nguyen
    Pasynkov, B. A.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 201 : 57 - 77
  • [9] Remotest Points and Approximate Remotest Points in Metric Spaces
    Baseri, M. Ahmadi
    Mazaheri, H.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A1): : 21 - 24
  • [10] Remotest Points and Approximate Remotest Points in Metric Spaces
    M. Ahmadi Baseri
    H. Mazaheri
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 21 - 24