An algorithm for computing virtual cut points in finite metric spaces

被引:0
|
作者
Dress, Andreas W. M. [1 ]
Huber, Katharina T. [2 ]
Koolen, Jacobus [3 ]
Moulton, Vincent [2 ]
机构
[1] Chinese Acad Sci, MPG Partner Inst Computat Biol, 320 Yue Yang Rd, Shanghai 200031, Peoples R China
[2] Univ East Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[3] POSTECH, Dept Math, Pohang, South Korea
来源
COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS | 2007年 / 4616卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note, we consider algorithms for computing virtual cut points in finite metric spaces and explain how these points can be used to study compatible decompositions of metrics generalizing the well-known decomposition of a tree metric into a sum of pairwise compatible split metrics.
引用
收藏
页码:4 / +
页数:2
相关论文
共 50 条
  • [1] An Algorithm for Computing Cutpoints in Finite Metric Spaces
    Dress, Andreas
    Huber, Katharina T.
    Koolen, Jacobus
    Moulton, Vincent
    Spillner, Andreas
    JOURNAL OF CLASSIFICATION, 2010, 27 (02) : 158 - 172
  • [2] An Algorithm for Computing Cutpoints in Finite Metric Spaces
    Andreas Dress
    Katharina T. Huber
    Jacobus Koolen
    Vincent Moulton
    Andreas Spillner
    Journal of Classification, 2010, 27 : 158 - 172
  • [3] Cut points in metric spaces
    Dress, Andreas W. M.
    Huber, Katharina T.
    Koolen, Jacobus
    Moulton, Vincent
    APPLIED MATHEMATICS LETTERS, 2008, 21 (06) : 545 - 548
  • [4] Local cut points and metric measure spaces with Ricci curvature bounded below
    Watanabe, Masayoshi
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 233 (01) : 229 - 256
  • [5] COMPUTING STEINER POINTS AND PROBABILITY STEINER POINTS IN l(1) AND l(2) METRIC SPACES
    Weng, J. F.
    Mareels, I.
    Thomas, D. A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (04) : 541 - 554
  • [6] ON THE FARTHEST POINTS IN CONVEX METRIC SPACES AND LINEAR METRIC SPACES
    Sangeeta
    Narang, T. D.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2014, 95 (109): : 229 - 238
  • [7] METRIC SPACES OF EXTREME POINTS
    Manes, Ernie
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 1823 - 1832
  • [8] Kantorovich distance on finite metric spaces: Arens–Eells norm and CUT norms
    Montrucchio L.
    Pistone G.
    Information Geometry, 2022, 5 (1) : 209 - 245
  • [9] On extreme points and representer theorems for the Lipschitz unit ball on finite metric spaces
    Bredies, Kristian
    Rodriguez, Jonathan Chirinos
    Naldi, Emanuele
    ARCHIV DER MATHEMATIK, 2024, 122 (06) : 651 - 658
  • [10] On extreme points and representer theorems for the Lipschitz unit ball on finite metric spaces
    Kristian Bredies
    Jonathan Chirinos Rodriguez
    Emanuele Naldi
    Archiv der Mathematik, 2024, 122 : 651 - 658