Cut points in metric spaces

被引:6
|
作者
Dress, Andreas W. M. [1 ]
Huber, Katharina T. [2 ]
Koolen, Jacobus [3 ]
Moulton, Vincent [2 ]
机构
[1] CAS MPG Partner Inst Computat Biol, Shanghai 20031, Peoples R China
[2] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
[3] POSTECH, Dept Math, Pohang, South Korea
基金
英国工程与自然科学研究理事会;
关键词
tight-span; cut point; metric space; block decomposition; optimal realization;
D O I
10.1016/j.aml.2007.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we will define topological and virtual cut points of finite metric spaces and show that, though their definitions seem to look rather distinct, they actually coincide. More specifically, let X denote a finite set, and let D : X x X -> R : (x, y) -> xy denote a metric defined on X. The tight span T(D) of D consists of all maps f is an element of R-X for which f (x) = sup(y is an element of X) (xy - f (x)) holds for all x is an element of X. Define a map f is an element of T(D) to be a topological cut point of D if T(D) - {f} is disconnected, and define it to be a virtual cut point of D if there exists a bipartition (or split) of the support supp(f) of f into two non-empty sets A and B such that ab = f(a) + f(b) holds for all points a is an element of A and b is an element of B. It will be shown that, for any given metric D, topological and virtual cut points actually coincide, i.e., a map f is an element of T(D) is a topological Cut point of D if and only if it is a virtual cut point of D. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:545 / 548
页数:4
相关论文
共 50 条
  • [21] COMMON FIXED POINTS IN CONE METRIC SPACES
    Vetro, Pasquale
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (03) : 464 - 468
  • [22] Common fixed points in generalized metric spaces
    Di Bari, Cristina
    Vetro, Pasquale
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) : 7322 - 7325
  • [23] Common Fixed Points for Multimaps in Metric Spaces
    Rafa Espínola
    Nawab Hussain
    Fixed Point Theory and Applications, 2010
  • [24] FIXED-POINTS IN COMPLETE METRIC SPACES
    REICH, S
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1971, 51 (05): : 270 - &
  • [25] Lebesgue points for Sobolev functions on metric spaces
    Kinnunen, J
    Latvala, V
    REVISTA MATEMATICA IBEROAMERICANA, 2002, 18 (03) : 685 - 700
  • [26] Fixed points in intuitionistic fuzzy metric spaces
    Alaca, Cihangir
    Turkoglu, Duran
    Yildiz, Cernil
    CHAOS SOLITONS & FRACTALS, 2006, 29 (05) : 1073 - 1078
  • [27] Covering mappings in metric spaces and fixed points
    A. V. Arutyunov
    Doklady Mathematics, 2007, 76 : 665 - 668
  • [28] TRIPLE FIXED POINTS IN ORDERED METRIC SPACES
    Aydi, Hassen
    Karapinar, Erdal
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (01): : 197 - 207
  • [29] Random fixed points of multifunctions on metric spaces
    Centre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore, Pakistan
    不详
    J. Nonlinear Funct. Anal., 1600,
  • [30] STABILITY OF FIXED POINTS IN GENERALIZED METRIC SPACES
    Latif, Abdul
    Nazir, Talat
    Abbas, Mujahid
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2018, 2 (03): : 287 - 294