Parseval p-frames and the Feichtinger conjecture

被引:2
|
作者
Liu, Bei [1 ]
Liu, Rui [2 ,3 ,4 ]
Zheng, Bentuo [5 ]
机构
[1] Tianjin Univ Technol, Dept Math, Tianjin, Peoples R China
[2] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[5] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
(Parseval) p-frame; q-Riesz basic sequence; Clarkson's inequality; Feichtinger conjecture; Schauder frame; Pseudo-framing; DECOMPOSITIONS; SUBSPACES; BASES;
D O I
10.1016/j.jmaa.2014.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a precise characterization of Parseval p-frames by the known Clarlcson's inequality for l(p). As a direct application, we show that every tight p-frame {g(j)}(j=1)(infinity) for l(p), with frame bound B > 0 and inf(j) parallel to g(j)parallel to >= C > 0, can be decomposed into left perpendicularB/C(p)right perpendicular standard q-Riesz basic sequences, and we show that the estimate left perpendicularB/Cpright perpendicular is optimal. Moreover, we prove the existence of a p-frame which is not equivalent to any Parsevel p-frame for l(p), and a Parseval p-frame which is not a Schauder frame sequence for the space or its dual space, while we obtain that every p-frame can become a pseudo-framing with l(q) coefficients for the dual space. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:248 / 259
页数:12
相关论文
共 50 条
  • [41] Hamiltonians Generated by Parseval Frames
    Bagarello, F.
    Kuzel, S.
    ACTA APPLICANDAE MATHEMATICAE, 2021, 171 (01)
  • [42] Equivalence Classes of Parseval Frames
    S. Ya. Novikov
    V. V. Sevost’yanova
    Mathematical Notes, 2022, 112 : 940 - 954
  • [43] The Feichtinger Conjecture for Reproducing Kernels in Model Subspaces
    Baranov, Anton
    Dyakonov, Konstantin
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (02) : 276 - 287
  • [44] The Feichtinger Conjecture for Reproducing Kernels in Model Subspaces
    Anton Baranov
    Konstantin Dyakonov
    Journal of Geometric Analysis, 2011, 21 : 276 - 287
  • [45] Generalized tight p-frames and spectral bounds for Laplace-like operators
    Siudeja, B. A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (02) : 167 - 198
  • [46] MOVING PARSEVAL FRAMES FOR VECTOR BUNDLES
    Freeman, D.
    Poore, D.
    Wei, A. R.
    Wyse, M.
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 817 - 832
  • [47] A Robust Compressed Domain Video Watermarking in P-frames with Controlled Bit Rate Increase
    Dutta, Tanima
    Sur, Arijit
    Nandi, Sukumar
    2013 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2013,
  • [48] The Feichtinger Conjecture and Reproducing Kernel Hilbert Spaces
    Lata, Sneh
    Paulsen, Vern
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (04) : 1303 - 1317
  • [49] Expansions For Gaussian Processes And Parseval Frames
    Luschgy, Harald
    Pages, Gilles
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1198 - 1221
  • [50] Finite Parseval Frames in Walsh Analysis
    Farkov Y.A.
    Journal of Mathematical Sciences, 2022, 263 (4) : 579 - 589