MOVING PARSEVAL FRAMES FOR VECTOR BUNDLES

被引:0
|
作者
Freeman, D. [1 ]
Poore, D. [2 ]
Wei, A. R. [2 ]
Wyse, M. [3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Pomona Coll, Dept Math, Claremont, CA 92711 USA
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2014年 / 40卷 / 03期
基金
美国国家科学基金会;
关键词
Frames; Naimark dilation theorem; embedding manifolds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parseval frames can be thought of as redundant or linearly dependent coordinate systems for Hilbert spaces, and have important applications in such areas as signal processing, data compression, and sampling theory. We extend the notion of a Parseval frame for a fixed Hilbert space to that of a moving Parseval frame for a vector bundle over a manifold. Many vector bundles do not have a moving basis, but in contrast to this every vector bundle over a paracompact manifold has a moving Parseval frame. We prove that a sequence of sections of a vector bundle is a moving Parseval frame if and only if the sections are the orthogonal projection of a moving orthonormal basis for a larger vector bundle. In the case that our vector bundle is the tangent bundle of a Riemannian manifold, we prove that a sequence of vector fields is a Parseval frame for the tangent bundle of a Riemannian manifold if and only if the vector fields are the orthogonal projection of a moving orthonormal basis for the tangent bundle of a larger Riemannian manifold.
引用
收藏
页码:817 / 832
页数:16
相关论文
共 50 条
  • [1] Moving frames for cotangent bundles
    Koiller, J
    Rios, PPM
    Ehlers, KM
    REPORTS ON MATHEMATICAL PHYSICS, 2002, 49 (2-3) : 225 - 238
  • [2] Invariant frames for vector bundles and applications
    Jotz, M.
    Ratiu, T. S.
    Zambon, M.
    GEOMETRIAE DEDICATA, 2012, 158 (01) : 23 - 34
  • [3] Invariant frames for vector bundles and applications
    M. Jotz
    T. S. Ratiu
    M. Zambon
    Geometriae Dedicata, 2012, 158 : 23 - 34
  • [4] ON REPRESENTATION OF PARSEVAL FRAMES
    Ryabtsov, I. S.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (02): : 194 - 199
  • [5] On the existence of local frames of CR vector bundles
    Kajisa, Tomonori
    HOKKAIDO MATHEMATICAL JOURNAL, 2013, 42 (01) : 121 - 130
  • [6] Enveloped Sinusoid Parseval Frames
    Goehle, Geoff
    Cowen, Benjamin
    Park, J. Daniel
    Brown, Daniel C.
    2022 OCEANS HAMPTON ROADS, 2022,
  • [7] A new identity for Parseval frames
    Balan, Radu
    Casazza, Peter G.
    Edidin, Dan
    Kutyniok, Gitta
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) : 1007 - 1015
  • [8] Parseval frames for ICC groups
    Dutkay, Dorin Ervin
    Han, Deguang
    Picioroaga, Gabriel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (09) : 3071 - 3090
  • [9] Hamiltonians Generated by Parseval Frames
    F. Bagarello
    S. Kużel
    Acta Applicandae Mathematicae, 2021, 171
  • [10] Parseval transforms for finite frames
    Zheng, Xianwei
    Yang, Shouzhi
    Tang, Yuan Yan
    Li, Youfa
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (03)