MOVING PARSEVAL FRAMES FOR VECTOR BUNDLES

被引:0
|
作者
Freeman, D. [1 ]
Poore, D. [2 ]
Wei, A. R. [2 ]
Wyse, M. [3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Pomona Coll, Dept Math, Claremont, CA 92711 USA
[3] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2014年 / 40卷 / 03期
基金
美国国家科学基金会;
关键词
Frames; Naimark dilation theorem; embedding manifolds;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parseval frames can be thought of as redundant or linearly dependent coordinate systems for Hilbert spaces, and have important applications in such areas as signal processing, data compression, and sampling theory. We extend the notion of a Parseval frame for a fixed Hilbert space to that of a moving Parseval frame for a vector bundle over a manifold. Many vector bundles do not have a moving basis, but in contrast to this every vector bundle over a paracompact manifold has a moving Parseval frame. We prove that a sequence of sections of a vector bundle is a moving Parseval frame if and only if the sections are the orthogonal projection of a moving orthonormal basis for a larger vector bundle. In the case that our vector bundle is the tangent bundle of a Riemannian manifold, we prove that a sequence of vector fields is a Parseval frame for the tangent bundle of a Riemannian manifold if and only if the vector fields are the orthogonal projection of a moving orthonormal basis for the tangent bundle of a larger Riemannian manifold.
引用
收藏
页码:817 / 832
页数:16
相关论文
共 50 条
  • [21] Parseval Frames and the Discrete Walsh Transform
    Yu. A. Farkov
    M. G. Robakidze
    Mathematical Notes, 2019, 106 : 446 - 456
  • [22] On construction of multivariate Parseval wavelet frames
    Skopina, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 1 - 11
  • [23] Unbounded Hamiltonians generated by Parseval frames
    Bagarello, F.
    Kuzel, S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (05)
  • [24] Approximate duals and nearly Parseval frames
    Mirzaee Azandaryani, Morteza
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (04) : 515 - 526
  • [25] PARSEVAL FRAMES OF PIECEWISE CONSTANT FUNCTIONS
    Dutkay, Dorin Ervin
    Ranasinghe, Rajitha
    OPERATORS AND MATRICES, 2020, 14 (02): : 317 - 331
  • [26] Unbounded Hamiltonians generated by Parseval frames
    F. Bagarello
    S. Kużel
    Analysis and Mathematical Physics, 2023, 13
  • [27] Parseval Wavelet Frames on Riemannian Manifold
    Marcin Bownik
    Karol Dziedziul
    Anna Kamont
    The Journal of Geometric Analysis, 2022, 32
  • [28] A Study of Vector-valued Binary Scaling Functions and Parseval Frames with Integer Dilation Constant
    Lv Bingqing
    Huang Jing
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 980 - 983
  • [29] Classes of finite equal norm Parseval frames
    Casazza, Peter G.
    Leonhard, Nicole
    FRAMES AND OPERATOR THEORY IN ANALYSIS AND SIGNAL PROCESSING, 2008, 451 : 11 - 31
  • [30] Construction of Wavelet and Gabor's Parseval Frames
    Gordillo, Maria Luisa
    Ano, Osvaldo
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (03): : 325 - 337