Scattering in Geometric Approach to Quantum Theory

被引:2
|
作者
Schwarz, Albert [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
inclusive scattering matrix; geometric approach; convex cone;
D O I
10.3390/universe8120663
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We define inclusive scattering matrix in the framework of a geometric approach to quantum field theory. We review the definitions of scattering theory in the algebraic approach and relate them to the definitions in the geometric approach.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Geometric and algebraic approaches to quantum theory
    Schwarz, A.
    [J]. NUCLEAR PHYSICS B, 2021, 973
  • [22] A geometric approach to the theory of evidence
    Cuzzolin, Fabio
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2008, 38 (04): : 522 - 534
  • [23] On Computable Geometric Expressions in Quantum Theory
    Ross N. Greenwood
    [J]. Advances in Applied Clifford Algebras, 2020, 30
  • [24] Geometric phase in relativistic quantum theory
    Wang, ZC
    Li, BZ
    [J]. PHYSICAL REVIEW A, 1999, 60 (06): : 4313 - 4317
  • [25] Geometric phase in relativistic quantum theory
    Wang, Zheng-Chuan
    Li, Bo-Zang
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (06): : 4313 - 4317
  • [26] A geometric perspective on quantum field theory
    Segal, Graeme
    [J]. ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 : 281 - 294
  • [27] Quantum parameters of the geometric Langlands theory
    Yifei Zhao
    [J]. Selecta Mathematica, 2023, 29
  • [28] On Computable Geometric Expressions in Quantum Theory
    Greenwood, Ross N.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2020, 30 (01)
  • [29] ALGEBRAIC SCATTERING-THEORY AND THE GEOMETRIC PHASE
    LEVAY, P
    APAGYI, B
    [J]. PHYSICAL REVIEW A, 1993, 47 (02): : 823 - 830
  • [30] Discrete quantum scattering theory
    Kukulin, VI
    Rubtsova, OA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 134 (03) : 404 - 426