Geometric phase in relativistic quantum theory

被引:6
|
作者
Wang, ZC
Li, BZ
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Ctr Condensed Matter Phys, Beijing 100080, Peoples R China
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevA.60.4313
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The geometric phase in Dirac relativistic quantum theory is obtained in this paper. It is slightly different from Berry's nonrelativistic result, and satisfies the invariance of the general Lorenz transformation in the relativistic quantum theory. This relativistic geometric phase can reduce to Berry's expression when we adopt the nonrelativistic approximation. [S1050-2947(99)07312-6].
引用
收藏
页码:4313 / 4317
页数:5
相关论文
共 50 条
  • [1] Geometric phase in relativistic quantum theory
    Wang, Zheng-Chuan
    Li, Bo-Zang
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (06): : 4313 - 4317
  • [2] Vacuum fluctuations, geometric modular action and relativistic quantum information theory
    Verch, R.
    [J]. SPECIAL RELATIVITY: WILL IT SURVIVE THE NEXT 101 YEARS?, 2006, 702 : 133 - 162
  • [3] Geometric phase and gauge theory structure in quantum computing
    Bruno, A.
    Capolupo, A.
    Kak, S.
    Raimondo, G.
    Vitiello, G.
    [J]. 5TH INTERNATIONAL WORKSHOP DICE2010: SPACE-TIME-MATTER - CURRENT ISSUES IN QUANTUM MECHANICS AND BEYOND, 2011, 306
  • [4] Entanglement, nonclassical properties, and geometric phase in circuit quantum electrodynamics with relativistic motion
    Abdel-Khalek, S.
    Berrada, K.
    [J]. SOLID STATE COMMUNICATIONS, 2019, 290 : 31 - 36
  • [5] ON GEOMETRIC-THEORY OF RELATIVISTIC OPTICS
    MIRON, R
    KAWAGUCHI, T
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1991, 312 (06): : 593 - 598
  • [6] Relativistic adiabatic approximation and geometric phase
    Mostafazadeh, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (38): : 7829 - 7845
  • [7] Geometric models of the quantum relativistic rotating oscillator
    Cotaescu, II
    [J]. MODERN PHYSICS LETTERS A, 1997, 12 (10) : 685 - 690
  • [8] Hidden geometric character of relativistic quantum mechanics
    Almeida, Jose B.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (01)
  • [9] Revisiting quantum relativistic effects from phase transition by the catastrophe theory
    Wu, Jiu Hui
    Zhou, Kejiang
    Yang, Shao Kun
    [J]. EPL, 2022, 139 (05)
  • [10] Spin in Relativistic Quantum Theory
    Polyzou, W. N.
    Gloeckle, W.
    Witala, H.
    [J]. FEW-BODY SYSTEMS, 2013, 54 (11) : 1667 - 1704