Choice of Regularization Parameter in Constrained Total Variational Image Restoration Model

被引:2
|
作者
Chen, Zhibin [1 ]
Wang, Man [1 ]
Wen, You-Wei [1 ]
Zhu, Zhining [1 ]
机构
[1] Kunming Univ Sci & Technol, Dept Math, Kunming, Yunan, Peoples R China
关键词
Total variational; regularization parameter; box constraints; discrepancy principle; RECONSTRUCTION; ALGORITHMS;
D O I
10.1109/CIS.2014.110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image restoration problem is ill-conditioning and is generally formulated to solve a total-variational based minimization problem. Because of the physics of the underlying image formation process, the intensities of the images lie in a box range. Hence, it is reasonable to add the box constraints in the minimization problem. The minimization problem includes an unknown regularization parameter. We propose a numerical scheme to simultaneous solve the box constrained Total Variation (TV) minimization using primal-dual method and variable splitting method and choose the suitable regularization parameter according to the discrepancy principle. Numerical simulations are used to demonstrate the performance of the proposed method.
引用
下载
收藏
页码:736 / 740
页数:5
相关论文
共 50 条
  • [11] Optimal Choice of Regularization Parameter in Image Denoising
    Lucchese, Mirko
    Frosio, Iuri
    Borghese, N. Alberto
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 534 - 543
  • [12] Total Variation Regularization for Poisson Vector-Valued Image Restoration with a Spatially Adaptive Regularization Parameter Selection
    Rodriguez, Paul
    PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2011), 2011, : 402 - 407
  • [13] A simulation study on the choice of regularization parameter in l2-norm ultrasound image restoration
    Chen, Zhouye
    Basarab, Adrian
    Kouame, Denis
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 6346 - 6349
  • [14] Variational image deringing using varying regularization parameter
    Sitdikov I.T.
    Krylov A.S.
    Pattern Recognition and Image Analysis, 2015, 25 (01) : 96 - 100
  • [15] Parameter choice in Banach space regularization under variational inequalities
    Hofmann, Bernd
    Mathe, Peter
    INVERSE PROBLEMS, 2012, 28 (10)
  • [16] Constrained Nonconvex Hybrid Variational Model for Edge-Preserving Image Restoration
    Liu, Ryan Wen
    Wu, Di
    Wu, Chuan-Sheng
    Xu, Tian
    Xiong, Naixue
    2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS, 2015, : 1809 - 1814
  • [17] Total variation image restoration and parameter estimation using variational posterior distribution approximation
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 97 - +
  • [18] Regularization parameter adaptive selection for blurred image restoration
    Chi, Ruinan
    Huang, Xin
    Journal of Computers (Taiwan), 2019, 30 (04) : 233 - 239
  • [19] A convex regularization model for image restoration
    Jidesh, P.
    COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (08) : 66 - 78
  • [20] Box-constrained total-variation image restoration with automatic parameter estimation
    He, Chuan
    Hu, Chang-Hua
    Zhang, Wei
    Shi, Biao
    Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (08): : 1804 - 1811