Total variation image restoration and parameter estimation using variational posterior distribution approximation

被引:0
|
作者
Babacan, S. Derin [1 ]
Molina, Rafael [2 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Univ Granada, Dept Ciencias Computac & IA, Granada 18071, Spain
关键词
image restoration; total variation; variational methods; parameter estimation; Bayesian methods;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we propose novel algorithms for total variation (TV) based image restoration and parameter estimation utilizing variational distribution approximations. By following the hierarchical Bayesian framework, we simultaneously estimate the reconstructed image and the unknown hyperparameters for both the image prior and the image degradation noise. Our algorithms provide an approximation to the posterior distributions of the unknowns so that both the uncertainty of the estimates can be measured and different values from these distributions can be used for the estimates. We also show that some of the current approaches to TV-based image restoration are special cases of our variational framework. Experimental results show that the proposed approaches provide competitive performance without any assumptions about unknown hyperparameters and clearly outperform existing methods when additional information is included.
引用
收藏
页码:97 / +
页数:2
相关论文
共 50 条
  • [1] Parameter estimation in TV image restoration using variational distribution approximation
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (03) : 326 - 339
  • [2] FAST TOTAL VARIATION IMAGE RESTORATION WITH PARAMETER ESTIMATION USING BAYESIAN INFERENCE
    Amizic, Bruno
    Babacan, S. Derin
    Ng, Michael K.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 770 - 773
  • [3] A Fast Adaptive Parameter Estimation for Total Variation Image Restoration
    He, Chuan
    Hu, Changhua
    Zhang, Wei
    Shi, Biao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (12) : 4954 - 4967
  • [4] From global to local Bayesian parameter estimation in image restoration using variational distribution approximations
    Molina, Rafael
    Vega, Miguel
    Katsaggelos, Aggelos K.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 121 - +
  • [5] Selection of regularization parameter in total variation image restoration
    Liao, Haiyong
    Li, Fang
    Ng, Michael K.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2311 - 2320
  • [6] Generalized Gaussian Markov Random Field image restoration using variational distribution approximation
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1265 - +
  • [7] Choice of Regularization Parameter in Constrained Total Variational Image Restoration Model
    Chen, Zhibin
    Wang, Man
    Wen, You-Wei
    Zhu, Zhining
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 736 - 740
  • [8] Kronecker product approximation for the total variation regularization in image restoration
    Bentbib, Abdeslem Hafid
    Bouhamidi, Abderrahman
    Kreit, Karim
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2022, 49 (01): : 84 - 98
  • [9] Automated Parameter Selection for Total Variation Minimization in Image Restoration
    Langer, Andreas
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 57 (02) : 239 - 268
  • [10] Automated Parameter Selection for Total Variation Minimization in Image Restoration
    Andreas Langer
    [J]. Journal of Mathematical Imaging and Vision, 2017, 57 : 239 - 268