Choice of Regularization Parameter in Constrained Total Variational Image Restoration Model

被引:2
|
作者
Chen, Zhibin [1 ]
Wang, Man [1 ]
Wen, You-Wei [1 ]
Zhu, Zhining [1 ]
机构
[1] Kunming Univ Sci & Technol, Dept Math, Kunming, Yunan, Peoples R China
关键词
Total variational; regularization parameter; box constraints; discrepancy principle; RECONSTRUCTION; ALGORITHMS;
D O I
10.1109/CIS.2014.110
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image restoration problem is ill-conditioning and is generally formulated to solve a total-variational based minimization problem. Because of the physics of the underlying image formation process, the intensities of the images lie in a box range. Hence, it is reasonable to add the box constraints in the minimization problem. The minimization problem includes an unknown regularization parameter. We propose a numerical scheme to simultaneous solve the box constrained Total Variation (TV) minimization using primal-dual method and variable splitting method and choose the suitable regularization parameter according to the discrepancy principle. Numerical simulations are used to demonstrate the performance of the proposed method.
引用
收藏
页码:736 / 740
页数:5
相关论文
共 50 条
  • [1] Selection of regularization parameter in total variation image restoration
    Liao, Haiyong
    Li, Fang
    Ng, Michael K.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2311 - 2320
  • [2] Image Restoration using Nonlocal Regularized Variational Model with Spatially Adapted Regularization Parameter
    Pan, Chen
    Feng, Helin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [3] ITERATIVE CHOICE OF THE OPTIMAL REGULARIZATION PARAMETER IN TV IMAGE RESTORATION
    Toma, Alina
    Sixou, Bruno
    Peyrin, Francoise
    [J]. INVERSE PROBLEMS AND IMAGING, 2015, 9 (04) : 1171 - 1191
  • [4] A multi-parameter regularization model for image restoration
    Fan, Qibin
    Jiang, Dandan
    Jiao, Yuling
    [J]. SIGNAL PROCESSING, 2015, 114 : 131 - 142
  • [5] Adaptive Box-Constrained Total Variation Image Restoration Using Iterative Regularization Parameter Adjustment Method
    Zhu, Zhining
    Cai, Guangcheng
    Wen, You-Wei
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (07)
  • [6] Selection of Regularization Parameter Based on Synchronous Noise in Total Variation Image Restoration
    Liu, Peng
    Liu, Dingsheng
    Liu, Zhiwen
    [J]. THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011), 2011, 8009
  • [7] Sparsity constrained regularization for multiframe image restoration
    Shankar, Premchandra M.
    Neifeld, Mark A.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (05) : 1199 - 1214
  • [8] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [9] A generalized hybrid nonconvex variational regularization model for staircase reduction in image restoration
    Tang, Liming
    Ren, Yanjun
    Fang, Zhuang
    He, Chuanjiang
    [J]. NEUROCOMPUTING, 2019, 359 : 15 - 31
  • [10] Spatially dependent regularization parameter selection in total generalized variation models for image restoration
    Bredies, Kristian
    Dong, Yiqiu
    Hintermueller, Michael
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (01) : 109 - 123