A Fast Adaptive Parameter Estimation for Total Variation Image Restoration

被引:49
|
作者
He, Chuan [1 ]
Hu, Changhua [1 ]
Zhang, Wei [1 ]
Shi, Biao [1 ]
机构
[1] High Tech Inst Xian, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
Total variation (TV); adaptive parameter estimation (APE); alternating direction method of multipliers (ADMM); discrepancy principle; variable splitting; REGULARIZATION PARAMETER; DUAL METHODS; ALGORITHM; SELECTION; RECONSTRUCTION; MINIMIZATION; TV;
D O I
10.1109/TIP.2014.2360133
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Estimation of the regularization parameter, which strikes a balance between the data fidelity and regularity, is essential for successfully solving ill-posed image restoration problems. Based on the classical total variation (TV) model and prevalent alternating direction method of multipliers, we hammer out a fast algorithm being able to simultaneously estimate the regularization parameter and restore the degraded image. By applying variable splitting technique to both the regularization term and data fidelity term, we overcome the nondifferentiability of TV and achieve a closed form to update the regularization parameter in each iteration. The solution is guaranteed to satisfy Morozov's discrepancy principle. Furthermore, we present a convergence proof for the proposed algorithm on the premise of a variable regularization parameter. Experimental results demonstrate that the proposed algorithm is superior in speed and competitive in accuracy compared with several state-of-the-art methods. Besides, the proposed method can be smoothly extended to the multichannel image restoration.
引用
收藏
页码:4954 / 4967
页数:14
相关论文
共 50 条
  • [1] FAST TOTAL VARIATION IMAGE RESTORATION WITH PARAMETER ESTIMATION USING BAYESIAN INFERENCE
    Amizic, Bruno
    Babacan, S. Derin
    Ng, Michael K.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 770 - 773
  • [2] Adaptive Parameter Estimation for Total Variation Image Denoising
    Wang, Baoxian
    Zhao, Baojun
    Deng, Chenwei
    Tang, Linbo
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 2832 - 2835
  • [3] Fast Total-Variation Image Deconvolution with Adaptive Parameter Estimation via Split Bregman Method
    He, Chuan
    Hu, Changhua
    Zhang, Wei
    Shi, Biao
    Hu, Xiaoxiang
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [4] Total variation image restoration and parameter estimation using variational posterior distribution approximation
    Babacan, S. Derin
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 97 - +
  • [5] Selection of regularization parameter in total variation image restoration
    Liao, Haiyong
    Li, Fang
    Ng, Michael K.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (11) : 2311 - 2320
  • [6] A FAST TOTAL VARIATION MINIMIZATION METHOD FOR IMAGE RESTORATION
    Huang, Yumei
    Ng, Michael K.
    Wen, You-Wei
    [J]. MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 774 - 795
  • [7] Structure tensor adaptive total variation for image restoration
    Prasath, Surya
    Dang Ngoc Hoang Thanh
    [J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2019, 27 (02) : 1147 - 1156
  • [8] Adaptive total variation for image restoration in BV space
    Chen, Y
    Wunderli, T
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 117 - 137
  • [9] Automated Parameter Selection for Total Variation Minimization in Image Restoration
    Langer, Andreas
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 57 (02) : 239 - 268
  • [10] Automated Parameter Selection for Total Variation Minimization in Image Restoration
    Andreas Langer
    [J]. Journal of Mathematical Imaging and Vision, 2017, 57 : 239 - 268