Quantization of gravity in spherical harmonic basis

被引:3
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
10.1103/PhysRevD.104.086023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform canonical quantization of gravity in the background of a Schwarzschild black hole in the generalized Regge-Wheeler gauge proposed in Kallosh and Rahman [Quantization of gravity in the black hole background, Phys. Rev. D 104, 086008 (2021)]. We find that the Hamiltonian at the quadratic level is unitary and ghost-free. Two canonical degrees of freedom are associated with Zerilli-Moncrief and Cunningham-Price-Moncrief functions of the metric perturbations. The l < 2 part of the Hamiltonian vanishes. This quantization with the unitary Hamiltonian for gravity is valid also in Minkowski space in spherical coordinates.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Spherical harmonic analysis and synthesis using FFT: Application to temporal gravity variation
    Hwang, C
    Kao, YC
    COMPUTERS & GEOSCIENCES, 2006, 32 (04) : 442 - 451
  • [32] Spherical harmonic coefficients of isotropic polynomial functions with applications to gravity field modeling
    Piretzidis, Dimitrios
    Kotsakis, Christopher
    Mertikas, Stelios P.
    Sideris, Michael G.
    JOURNAL OF GEODESY, 2023, 97 (11)
  • [33] Application of the spherical harmonic gravity model in high precision inertial navigation systems
    Wang, Jing
    Yang, Gongliu
    Li, Xiangyun
    Zhou, Xiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (09)
  • [34] Spherical harmonic coefficients of isotropic polynomial functions with applications to gravity field modeling
    Dimitrios Piretzidis
    Christopher Kotsakis
    Stelios P. Mertikas
    Michael G. Sideris
    Journal of Geodesy, 2023, 97
  • [35] SPHERICAL HARMONIC REPRESENTATION OF MARTIAN GRAVITY USING A SHORT-ARC TECHNIQUE
    DANIELS, EF
    TOLSON, RH
    GAPCYNSKI, JP
    JOURNAL OF SPACECRAFT AND ROCKETS, 1977, 14 (06) : 323 - 327
  • [36] EXPLICIT CONSTRUCTION OF THE MODIFIED SPHERICAL HARMONIC SERIES FOR THE GRAVITY GRADIENTS AND ANALYSIS OF THEIR CHARACTERISTICS
    Petrovskaya, M. S.
    Vershkov, A. N.
    ARTIFICIAL SATELLITES-JOURNAL OF PLANETARY GEODESY, 2007, 42 (04): : 185 - 214
  • [37] SPHERICAL HARMONIC SYNTHESIS AND LEAST-SQUARES COMPUTATIONS IN SATELLITE GRAVITY GRADIOMETRY
    BETTADPUR, SV
    SCHUTZ, BE
    LUNDBERG, JB
    BULLETIN GEODESIQUE, 1992, 66 (03): : 261 - 271
  • [38] Spherical Logarithmic Quantization
    Matschkal, Bernd
    Huber, Johannes B.
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (01): : 126 - 140
  • [39] Quantization of emergent gravity
    Yang, Hyun Seok
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (4-5):
  • [40] STOCHASTIC QUANTIZATION AND GRAVITY
    RUMPF, H
    LECTURE NOTES IN PHYSICS, 1985, 226 : 355 - 385