Quantization of gravity in spherical harmonic basis

被引:3
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
10.1103/PhysRevD.104.086023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform canonical quantization of gravity in the background of a Schwarzschild black hole in the generalized Regge-Wheeler gauge proposed in Kallosh and Rahman [Quantization of gravity in the black hole background, Phys. Rev. D 104, 086008 (2021)]. We find that the Hamiltonian at the quadratic level is unitary and ghost-free. Two canonical degrees of freedom are associated with Zerilli-Moncrief and Cunningham-Price-Moncrief functions of the metric perturbations. The l < 2 part of the Hamiltonian vanishes. This quantization with the unitary Hamiltonian for gravity is valid also in Minkowski space in spherical coordinates.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The choice of the spherical radial basis functions in local gravity field modeling
    R. Tenzer
    R. Klees
    Studia Geophysica et Geodaetica, 2008, 52
  • [22] Sparsifying spherical radial basis functions based regional gravity models
    Yu, Haipeng
    Chang, Guobin
    Zhang, Shubi
    Qian, Nijia
    JOURNAL OF SPATIAL SCIENCE, 2022, 67 (02) : 297 - 312
  • [23] Shape Representation of Human Anatomy using Spherical Harmonic Basis Function
    Tateyama, Tomoko
    Okegawa, Megumi
    Kohara, Shinya
    Han, Xianhua
    Kanasaki, Shuzo
    Furukawa, Akira
    Jiang, Huiyan
    Murata, Kiyoshi
    Chen, Yen-Wei
    2011 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY (ICCIT), 2012, : 866 - 869
  • [25] A new glitch-rejection algorithm forged in the spherical harmonic basis
    Edwards, Mark
    Sutton, Patrick J.
    9TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES (AMALDI 9) AND THE 2011 NUMERICAL RELATIVITY - DATA ANALYSIS MEETING (NRDA 2011), 2012, 363
  • [26] Local spherical harmonic power spectra from local magnetic or gravity data
    Plattner, A. M.
    Johnson, C. L.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 236 (03) : 1668 - 1679
  • [27] The Spherical Cap Harmonic Analysis Modeling Method Based on Disturbing Gravity Gradients
    Wang Y.
    Jiang X.
    1802, SinoMaps Press (46): : 1802 - 1811
  • [28] SPHERICAL HARMONIC REPRESENTATION OF THE GRAVITY-FIELD FROM DYNAMIC SATELLITE DATA
    KLOSKO, SM
    WAGNER, CA
    PLANETARY AND SPACE SCIENCE, 1982, 30 (01) : 5 - 28
  • [29] Computation and simulation of global and local spherical harmonic coefficients of asteroid gravity field
    Guo, Yanning
    Li, Xiaoyu
    Ma, Guangfu
    Cui, Hutao
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2015, 47 (05): : 13 - 19
  • [30] RADIALLY ADAPTIVE EVALUATION OF THE SPHERICAL HARMONIC GRAVITY SERIES FOR NUMERICAL ORBITAL PROPAGATION
    Probe, Austin
    Macomber, Brent
    Read, Julie L.
    Woolands, Robyn M.
    Junkins, John L.
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 2479 - 2487