Quantization of gravity in spherical harmonic basis

被引:3
|
作者
Kallosh, Renata [1 ,2 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
10.1103/PhysRevD.104.086023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform canonical quantization of gravity in the background of a Schwarzschild black hole in the generalized Regge-Wheeler gauge proposed in Kallosh and Rahman [Quantization of gravity in the black hole background, Phys. Rev. D 104, 086008 (2021)]. We find that the Hamiltonian at the quadratic level is unitary and ghost-free. Two canonical degrees of freedom are associated with Zerilli-Moncrief and Cunningham-Price-Moncrief functions of the metric perturbations. The l < 2 part of the Hamiltonian vanishes. This quantization with the unitary Hamiltonian for gravity is valid also in Minkowski space in spherical coordinates.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spherical harmonic analysis and gravity gradient tensor
    Luo, Zhicai
    Chao, Dingbo
    Ning, Jinsheng
    Wuhan Cehui Keji Daxue Xuebao/Journal of Wuhan Technical University of Surveying and Mapping, 22 (04): : 346 - 349
  • [2] MASS SOURCES OF SPHERICAL HARMONIC GRAVITY COEFFICIENTS
    LOWREY, B
    HEURING, FT
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (06): : 373 - 373
  • [3] Transformation of global spherical harmonic models of the gravity field to a local adjusted spherical cap harmonic model
    Ghadi K. A. Younis
    Reiner Jäger
    Matthias Becker
    Arabian Journal of Geosciences, 2013, 6 : 375 - 381
  • [4] Transformation of global spherical harmonic models of the gravity field to a local adjusted spherical cap harmonic model
    Younis, Ghadi K. A.
    Jaeger, Reiner
    Becker, Matthias
    ARABIAN JOURNAL OF GEOSCIENCES, 2013, 6 (02) : 375 - 381
  • [5] A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
    Claessens, S. J.
    Hirt, C.
    JOURNAL OF GEODESY, 2015, 89 (10) : 1035 - 1048
  • [6] A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
    S. J. Claessens
    C. Hirt
    Journal of Geodesy, 2015, 89 : 1035 - 1048
  • [7] DIVERGENCE CHARACTERISTIC OF THE EXTERIOR SPHERICAL HARMONIC GRAVITY POTENTIAL
    DeLuca, Kiichiro J.
    Scheeres, Daniel J.
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 1955 - 1967
  • [8] Analytical Radial Adaptive Method for Spherical Harmonic Gravity Models
    Ahmed M. Atallah
    Ahmad Bani Younes
    Robyn M. Woollands
    John L. Junkins
    The Journal of the Astronautical Sciences, 2022, 69 : 745 - 766
  • [9] Venus Spherical Harmonic Gravity Model to Degree and Order 60
    Konopliv, A. S.
    Sjogren, W. L.
    International Journal of Computer Integrated Manufacturing, 812 (04):
  • [10] Analytical Radial Adaptive Method for Spherical Harmonic Gravity Models
    Atallah, Ahmed M.
    Younes, Ahmad Bani
    Woollands, Robyn M.
    Junkins, John L.
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2022, 69 (03): : 745 - 766