Closures of locally divergent orbits of maximal tori and values of homogeneous forms

被引:2
|
作者
Tomanov, George [1 ]
机构
[1] Univ Claude Bernard Lyon I, Inst Camille Jordan, Batiment Math,43 Bld 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
locally divergent orbits; homogeneous orbit closure; values of forms at integer points; INVARIANT-MEASURES; MEASURE RIGIDITY; QUADRATIC-FORMS; DISTRIBUTIONS; TRAJECTORIES;
D O I
10.1017/etds.2020.102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a semisimple algebraic group over a number field K, S a finite set of places of K, K-S the direct product of the completions K-v, v is an element of S, and O the ring of S-integers of K. Let G = G(K-S), Gamma = G(O) and pi : G -> G/ Gamma the quotient map. We describe the closures of the locally diverergent orbits T pi(g) where T is a maximal K-S-split torus in G. If #S = 2 then the closure <(T pi(g))over bar> is a finite union of T-orbits stratified in terms of parabolic subgroups of G x G and, consequently, <(T pi(g))over bar> is homogeneous (i.e. <(T pi(g))over bar> = H pi (g) for a subgroup H of G) if and only if <(T pi(g))over bar> is closed. On the other hand, if #S > 2 and K is not a CM-field then T TC(g) is homogeneous for G = SLn and, generally, non-homogeneous but squeezed between closed orbits of two reductive subgroups of equal semisimple K-ranks for G not equal SLn. As an application, we prove that <(f (O-n))over bar> = K-S for the class of non-rational locally K-decomposable homogeneous forms f is an element of K-S[x(1), ..., x(n)].
引用
收藏
页码:3142 / 3177
页数:36
相关论文
共 30 条
  • [1] Losed orbits for actions of maximal tori on homogeneous spaces
    Tomanov, G
    Weiss, B
    DUKE MATHEMATICAL JOURNAL, 2003, 119 (02) : 367 - 392
  • [2] Values of decomposable forms at S-integral points and orbits of tori on homogeneous spaces
    Tomanov, George
    DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) : 533 - 562
  • [3] Actions of maximal Tori on homogeneous spaces
    Tomanov, G
    RIGIDITY IN DYNAMICS AND GEOMETRY: CONTRIBUTIONS FROM THE PROGRAMME ERGODIC THEORY, GEOMETRIC RIGIDITY AND NUMBER THEORY, 2002, : 407 - 424
  • [4] Locally Divergent Orbits on Hilbert Modular Spaces
    Tomanov, George
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (06) : 1404 - 1433
  • [5] Normalizers of maximal tori and real forms of Lie groups
    Anton A. Gerasimov
    Dmitrii R. Lebedev
    Sergey V. Oblezin
    European Journal of Mathematics, 2022, 8 : 655 - 671
  • [6] Normalizers of maximal tori and real forms of Lie groups
    Gerasimov, Anton A.
    Lebedev, Dmitrii R.
    Oblezin, Sergey, V
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (02) : 655 - 671
  • [7] Divergent torus orbits in homogeneous spaces of ℚ-rank two
    Pralay Chatterjee
    Dave Witte Morris
    Israel Journal of Mathematics, 2006, 152 : 229 - 243
  • [8] Divergent orbits on S-adic homogeneous spaces
    Tomanov, George
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2007, 3 (04) : 969 - 985
  • [9] Simple SL(n)-modules with normal closures of maximal torus orbits
    Kuyumzhiyan, Karine
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (04) : 515 - 538
  • [10] Simple SL(n)-modules with normal closures of maximal torus orbits
    Karine Kuyumzhiyan
    Journal of Algebraic Combinatorics, 2009, 30 : 515 - 538