Closures of locally divergent orbits of maximal tori and values of homogeneous forms

被引:2
|
作者
Tomanov, George [1 ]
机构
[1] Univ Claude Bernard Lyon I, Inst Camille Jordan, Batiment Math,43 Bld 11 Novembre 1918, F-69622 Villeurbanne, France
关键词
locally divergent orbits; homogeneous orbit closure; values of forms at integer points; INVARIANT-MEASURES; MEASURE RIGIDITY; QUADRATIC-FORMS; DISTRIBUTIONS; TRAJECTORIES;
D O I
10.1017/etds.2020.102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a semisimple algebraic group over a number field K, S a finite set of places of K, K-S the direct product of the completions K-v, v is an element of S, and O the ring of S-integers of K. Let G = G(K-S), Gamma = G(O) and pi : G -> G/ Gamma the quotient map. We describe the closures of the locally diverergent orbits T pi(g) where T is a maximal K-S-split torus in G. If #S = 2 then the closure <(T pi(g))over bar> is a finite union of T-orbits stratified in terms of parabolic subgroups of G x G and, consequently, <(T pi(g))over bar> is homogeneous (i.e. <(T pi(g))over bar> = H pi (g) for a subgroup H of G) if and only if <(T pi(g))over bar> is closed. On the other hand, if #S > 2 and K is not a CM-field then T TC(g) is homogeneous for G = SLn and, generally, non-homogeneous but squeezed between closed orbits of two reductive subgroups of equal semisimple K-ranks for G not equal SLn. As an application, we prove that <(f (O-n))over bar> = K-S for the class of non-rational locally K-decomposable homogeneous forms f is an element of K-S[x(1), ..., x(n)].
引用
收藏
页码:3142 / 3177
页数:36
相关论文
共 30 条
  • [21] INVARIANT FORMS AND AUTOMORPHISMS OF LOCALLY HOMOGENEOUS MULTISYMPLECTIC MANIFOLDS
    Echeverria-Enriquez, Arturo
    Ibort, Alberto
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (04): : 397 - 419
  • [22] Double Cosets NgN of Normalizers of Maximal Tori of Simple Algebraic Groups and Orbits of Partial Actions of Cremona Subgroups
    N. L. Gordeev
    E. A. Egorchenkova
    Journal of Mathematical Sciences, 2024, 286 (6) : 821 - 836
  • [23] On orbits of SL(2,Z)+ and values of binary quadratic forms on positive integral pairs
    Dani, SG
    Nogueira, A
    JOURNAL OF NUMBER THEORY, 2002, 95 (02) : 313 - 328
  • [24] Positive values of non-homogeneous indefinite quadratic forms of type (1, 4)
    Department of Mathematics, Panjab University, Chandigarh 160 014, India
    Proc Indian Acad Sci Math Sci, 4 (329-361):
  • [25] POSITIVE VALUES OF NON-HOMOGENEOUS INDEFINITE QUADRATIC-FORMS .2.
    BAMBAH, RP
    DUMIR, VC
    HANSGILL, RJ
    JOURNAL OF NUMBER THEORY, 1984, 18 (03) : 313 - 341
  • [26] Positive values of non-homogeneous indefinite quadratic forms of type (1, 4)
    Madhu Raka
    Urmila Rani
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1997, 107 : 329 - 361
  • [27] Positive values of non-homogeneous indefinite quadratic forms of type (2, 4)
    Dumir, VC
    HansGill, RJ
    Sehmi, R
    JOURNAL OF NUMBER THEORY, 1995, 55 (02) : 261 - 284
  • [28] On Prescribed Values of the Operator of Sectional Curvature on Three-Dimensional Locally Homogeneous Lorentzian Manifolds
    Klepikova S.V.
    Khromova O.P.
    Journal of Mathematical Sciences, 2023, 276 (4) : 508 - 516
  • [29] Positive values of non-homogeneous indefinite quadratic forms of type (1,4)
    Raka, M
    Rani, U
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (04): : 329 - 361
  • [30] Are outcomes of locally advanced cervical cancer associated with prebrachytherapy hemoglobin values and transfusion practice? An observational study comparing two large academic centres with divergent clinical guidelines
    Dear, Taylor
    Chiu, Jodi
    Meirovich, Harley
    Malkin, Amie
    Amjad, Razan
    D'Souza, David
    Callum, Jeannie
    Leung, Eric
    Kelly, Kate
    Lazo-Langner, Alejandro
    Solh, Ziad
    BRACHYTHERAPY, 2024, 23 (06) : 660 - 667