Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems

被引:66
|
作者
Dolejsí, V
Feistauer, M
Sobotíková, V
机构
[1] Charles Univ, Fac Math & Phys, Prague 18675, Czech Republic
[2] Czech Tech Univ, Fac Elect Engn, Dept Math, Prague 16627 6, Czech Republic
关键词
nonlinear convection-diffusion equation; discontinuous Galerkin finite element method; nonsymmetric stabilization of diffusive terms; interior and boundary penalty; asymptotic error estimates; numerical experiments;
D O I
10.1016/j.cma.2004.07.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The subject-matter is the analysis of the discontinuous Galerkin finite element method applied to a nonlinear convection-diffusion problem. In the contrary to the standard FEM the requirement of the conforming properties is omitted. This allows us to consider general polyhedral elements with mutually disjoint interiors. We do not require their convexity, but assume only that they are star-shaped. We present an error analysis for the case of a nonsymmetric discretization of diffusion terms. Theoretical results are accompanied by numerical experiments. © 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2709 / 2733
页数:25
相关论文
共 50 条
  • [41] A Priori Error Estimates of an Extrapolated Space-Time Discontinuous Galerkin Method for Nonlinear Convection-Diffusion Problems
    Vlasak, M.
    Dolejsi, V.
    Hajek, J.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (06) : 1456 - 1482
  • [42] A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems
    Egger, Herbert
    Schoeberl, Joachim
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1206 - 1234
  • [43] The discontinuous Galerkin method for fractional degenerate convection-diffusion equations
    Simone Cifani
    Espen R. Jakobsen
    Kenneth H. Karlsen
    BIT Numerical Mathematics, 2011, 51 : 809 - 844
  • [44] ANALYSIS OF THE IMPLICIT-EXPLICIT ULTRA-WEAK DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    Wang, Haijin
    Xu, Anping
    Tao, Qi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (01): : 1 - 23
  • [45] Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations
    Cao, Waixiang
    Liu, Hailiang
    Zhang, Zhimin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 290 - 317
  • [46] The discontinuous Galerkin method for fractional degenerate convection-diffusion equations
    Cifani, Simone
    Jakobsen, Espen R.
    Karlsen, Kenneth H.
    BIT NUMERICAL MATHEMATICS, 2011, 51 (04) : 809 - 844
  • [47] Solution of nonlinear convection-diffusion problems by a conservative Galerkin-characteristics method
    Mohammed Shuker Mahmood
    Numerische Mathematik, 2009, 112 : 601 - 636
  • [48] Solution of nonlinear convection-diffusion problems by a conservative Galerkin-characteristics method
    Mahmood, Mohammed Shuker
    NUMERISCHE MATHEMATIK, 2009, 112 (04) : 601 - 636
  • [49] Domain Decomposition Preconditioning for Discontinuous Galerkin Approximations of Convection-Diffusion Problems
    Antonietti, Paola F.
    Sueli, Endre
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 259 - 266
  • [50] An a posteriori error bound for discontinuous Galerkin approximations of convection-diffusion problems
    Georgoulis, Emmanuil H.
    Hall, Edward
    Makridakis, Charalambos
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 34 - 60