Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems

被引:66
|
作者
Dolejsí, V
Feistauer, M
Sobotíková, V
机构
[1] Charles Univ, Fac Math & Phys, Prague 18675, Czech Republic
[2] Czech Tech Univ, Fac Elect Engn, Dept Math, Prague 16627 6, Czech Republic
关键词
nonlinear convection-diffusion equation; discontinuous Galerkin finite element method; nonsymmetric stabilization of diffusive terms; interior and boundary penalty; asymptotic error estimates; numerical experiments;
D O I
10.1016/j.cma.2004.07.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The subject-matter is the analysis of the discontinuous Galerkin finite element method applied to a nonlinear convection-diffusion problem. In the contrary to the standard FEM the requirement of the conforming properties is omitted. This allows us to consider general polyhedral elements with mutually disjoint interiors. We do not require their convexity, but assume only that they are star-shaped. We present an error analysis for the case of a nonsymmetric discretization of diffusion terms. Theoretical results are accompanied by numerical experiments. © 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:2709 / 2733
页数:25
相关论文
共 50 条
  • [31] DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Havle, Oto
    Dolejsi, Vit
    Feistauer, Miloslav
    APPLICATIONS OF MATHEMATICS, 2010, 55 (05) : 353 - 372
  • [32] Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Metcalfe, Stephen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1578 - 1597
  • [33] COMPACT AND STABLE DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    Brdar, S.
    Dedner, A.
    Kloefkorn, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A263 - A282
  • [34] Analysis of a family of continuous-discontinuous Galerkin FEM for convection-diffusion problems
    Franz, Sebastian
    APPLIED NUMERICAL MATHEMATICS, 2016, 110 : 93 - 109
  • [35] A STABILIZED GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS
    DEGROEN, PPN
    VANVELDHUIZEN, M
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (02): : 274 - 297
  • [36] Asymptotically Exact Posteriori Error Estimates for the Local Discontinuous Galerkin Method Applied to Nonlinear Convection-Diffusion Problems
    Baccouch, Mahboub
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1868 - 1904
  • [37] On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems
    Balazsova, Monika
    Feistauer, Miloslav
    Hadrava, Martin
    Kosik, Adam
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (03) : 211 - 233
  • [38] Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations
    Liu, Xiaobin
    Zhang, Dazhi
    Meng, Xiong
    Wu, Boying
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [39] Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations
    Xiaobin Liu
    Dazhi Zhang
    Xiong Meng
    Boying Wu
    Journal of Scientific Computing, 2021, 87
  • [40] A discontinuous Galerkin method for optimal control problems governed by a system of convection-diffusion PDEs with nonlinear reaction terms
    Yuecel, Hamdullah
    Stoll, Martin
    Benner, Peter
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (10) : 2414 - 2431