QUANTIZED CURVATURE IN LOOP QUANTUM GRAVITY

被引:2
|
作者
Lim, Adrian P. C. [1 ]
机构
[1] 21 West Coast Crescent,Apt 09-04, Singapore 128045, Singapore
关键词
curvature; path integral; Einstein-Hilbert; loop representation; quantum gravity; SPIN NETWORKS;
D O I
10.1016/S0034-4877(19)30007-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hyperlink is a finite set of nonintersecting simple closed curves in R x R-3. Let S be an orientable surface in R x R-3. The Einstein-Hilbert action S(e, w) is defined on the vierbein e and an su(2) x su(2)-valued connection w, which are the dynamical variables in general relativity. Define a functional F-S(w), by integrating the curvature dw + w Lambda w over the surface S, which is su(2) x su(2)-valued. We integrate F-S(w) against a holonomy operator of a hyperlink L, disjoint from S, and the exponential of the Einstein-Hilbert action, over the space of vierbeins e and (su(2) x su(2))-valued connections w. Using our earlier work done on Chern-Simons path integrals in R-3, we will write this infinite-dimensional path integral as the limit of a sequence of Chern-Simons integrals. Our main result shows that the quantized curvature can be computed from the linking number between L and S.
引用
收藏
页码:355 / 372
页数:18
相关论文
共 50 条
  • [31] On Propagation in Loop Quantum Gravity
    Thiemann, Thomas
    Varadarajan, Madhavan
    [J]. UNIVERSE, 2022, 8 (12)
  • [32] Curvature vacuum correlations in quantum gravity
    Shao, D
    Shao, LA
    Shao, CG
    Chen, YH
    [J]. ACTA PHYSICA SINICA, 2004, 53 (02) : 367 - 372
  • [33] Automorphisms in loop quantum gravity
    Bahr, Benjamin
    Thiemann, Thomas
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (23)
  • [34] Loop Quantum Gravity: an introduction
    Perez, Alejandro
    [J]. COSMOLOGY AND GRAVITATION, 2009, 1132 : 386 - 428
  • [35] Polyhedra in loop quantum gravity
    Bianchi, Eugenio
    Dona, Pietro
    Speziale, Simone
    [J]. PHYSICAL REVIEW D, 2011, 83 (04):
  • [36] Matter in Loop Quantum Gravity
    Date, Ghanashyam
    Hossain, Golam Mortuza
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [37] Lectures on Loop Quantum Gravity
    Thiemann, T
    [J]. QUANTUM GRAVITY: FROM THEORY TO EXPERIMENTAL SEARCH, 2003, 631 : 41 - 135
  • [38] Extended loop quantum gravity
    Fatibene, L.
    Ferraris, M.
    Francaviglia, M.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (18)
  • [39] The loop algebra of quantum gravity
    Toh, TC
    [J]. HELVETICA PHYSICA ACTA, 1997, 70 (03): : 417 - 431
  • [40] Loop Representation of Quantum Gravity
    Lim, Adrian P. C.
    [J]. ANNALES HENRI POINCARE, 2024, 25 (03): : 1911 - 1956