QUANTIZED CURVATURE IN LOOP QUANTUM GRAVITY

被引:2
|
作者
Lim, Adrian P. C. [1 ]
机构
[1] 21 West Coast Crescent,Apt 09-04, Singapore 128045, Singapore
关键词
curvature; path integral; Einstein-Hilbert; loop representation; quantum gravity; SPIN NETWORKS;
D O I
10.1016/S0034-4877(19)30007-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hyperlink is a finite set of nonintersecting simple closed curves in R x R-3. Let S be an orientable surface in R x R-3. The Einstein-Hilbert action S(e, w) is defined on the vierbein e and an su(2) x su(2)-valued connection w, which are the dynamical variables in general relativity. Define a functional F-S(w), by integrating the curvature dw + w Lambda w over the surface S, which is su(2) x su(2)-valued. We integrate F-S(w) against a holonomy operator of a hyperlink L, disjoint from S, and the exponential of the Einstein-Hilbert action, over the space of vierbeins e and (su(2) x su(2))-valued connections w. Using our earlier work done on Chern-Simons path integrals in R-3, we will write this infinite-dimensional path integral as the limit of a sequence of Chern-Simons integrals. Our main result shows that the quantized curvature can be computed from the linking number between L and S.
引用
收藏
页码:355 / 372
页数:18
相关论文
共 50 条
  • [21] Curvature dependence of quantum gravity
    Christiansen, Nicolai
    Falls, Kevin
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. PHYSICAL REVIEW D, 2018, 97 (04)
  • [22] Loop Quantum Gravity
    Rovelli, Carlo
    [J]. LIVING REVIEWS IN RELATIVITY, 2008, 11 (1)
  • [23] Curvature excitation in quantum gravity
    Shao, CG
    Chen, ZQ
    Ma, WC
    Chen, YH
    Lin, SY
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 1998, 22 (02): : 117 - 121
  • [24] Curvature excitation in quantum gravity
    Shao, Changgui
    Chen, Zhongqiu
    Ma, Weichuan
    Chen, Yihan
    Lin, Shuyuan
    [J]. Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 22 (02): : 117 - 121
  • [25] Canonical structure of general relativity with a limiting curvature and its relation to loop quantum gravity
    Bodendorfer, N.
    Schaefer, A.
    Schliemann, J.
    [J]. PHYSICAL REVIEW D, 2018, 97 (08)
  • [26] Quantized Kähler Geometry and Quantum Gravity
    Jungjai Lee
    Hyun Seok Yang
    [J]. Journal of the Korean Physical Society, 2018, 72 : 1421 - 1441
  • [27] Quantum reduced loop gravity and the foundation of loop quantum cosmology
    Alesci, Emanuele
    Cianfrani, Francesco
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (08):
  • [28] Loop quantum cosmology from quantum reduced loop gravity
    Alesci, Emanuele
    Cianfrani, Francesco
    [J]. EPL, 2015, 111 (04)
  • [29] Curvature vacuum correlations in quantum gravity
    Shao, D
    Shao, LA
    Shao, CG
    Chen, YH
    [J]. ACTA PHYSICA SINICA, 2004, 53 (02) : 367 - 372
  • [30] Torsion and curvature as commutator for quantum gravity
    de Sabbata, V
    Ronchetti, L
    Yu, A
    [J]. ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS, 2002, 60 : 85 - 101