Motivic classes of moduli of Higgs bundles and moduli of bundles with connections

被引:9
|
作者
Fedorov, Roman [1 ]
Soibelman, Alexander [2 ]
Soibelman, Yan [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ South Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
VECTOR BUNDLES; FAMILIES; STACKS;
D O I
10.4310/CNTP.2018.v12.n4.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective curve over a field of characteristic zero. We calculate the motivic class of the moduli stack of semistable Higgs bundles on X. We also calculate the motivic class of the moduli stack of vector bundles with connections by showing that it is equal to the class of the stack of semistable Higgs bundles of the same rank and degree zero. We follow the strategy of Mozgovoy and Schiffmann for counting Higgs bundles over finite fields. The main new ingredient is a motivic version of a theorem of Harder about Eisenstein series claiming that all vector bundles have approximately the same motivic class of Borel reductions as the degree of Borel reduction tends to -infinity.
引用
收藏
页码:687 / 766
页数:80
相关论文
共 50 条
  • [41] Torelli theorem for the moduli space of symplectic parabolic Higgs bundles
    Roy, Sumit
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 168
  • [42] Symmetric products of a real curve and the moduli space of Higgs bundles
    Baird, Thomas John
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 126 : 7 - 21
  • [43] Bohr-Sommerfeld Lagrangians of moduli spaces of Higgs bundles
    Biswas, Indranil
    Gammelgaard, Niels Leth
    Logares, Marina
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 94 : 179 - 184
  • [44] Hitchin Fibration on Moduli of Symplectic and Orthogonal Parabolic Higgs Bundles
    Roy, Sumit
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (04)
  • [45] MODULI SPACES OF PARABOLIC U(p, q)-HIGGS BUNDLES
    Garcia-Prada, O.
    Logares, M.
    Munoz, Vicente
    QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (02): : 183 - 233
  • [46] Construction of the moduli space of Higgs bundles using analytic methods
    Fan, Yue
    MATHEMATICAL RESEARCH LETTERS, 2022, 29 (04) : 1011 - 1048
  • [47] Branes and moduli spaces of Higgs bundles on smooth projective varieties
    Indranil Biswas
    Sebastian Heller
    Laura P. Schaposnik
    Research in the Mathematical Sciences, 2021, 8
  • [48] Branes and moduli spaces of Higgs bundles on smooth projective varieties
    Biswas, Indranil
    Heller, Sebastian
    Schaposnik, Laura P.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (03)
  • [49] Cohomological x-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles
    Maulik, Davesh
    Shen, Junliang
    GEOMETRY & TOPOLOGY, 2023, 27 (04) : 1539 - 1586
  • [50] Logarithmic Connections, WZNW Action, and Moduli of Parabolic Bundles on the Sphere
    Meneses, Claudio
    Takhtajan, Leon A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 387 (02) : 649 - 680