Motivic classes of moduli of Higgs bundles and moduli of bundles with connections

被引:9
|
作者
Fedorov, Roman [1 ]
Soibelman, Alexander [2 ]
Soibelman, Yan [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ South Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
VECTOR BUNDLES; FAMILIES; STACKS;
D O I
10.4310/CNTP.2018.v12.n4.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a smooth projective curve over a field of characteristic zero. We calculate the motivic class of the moduli stack of semistable Higgs bundles on X. We also calculate the motivic class of the moduli stack of vector bundles with connections by showing that it is equal to the class of the stack of semistable Higgs bundles of the same rank and degree zero. We follow the strategy of Mozgovoy and Schiffmann for counting Higgs bundles over finite fields. The main new ingredient is a motivic version of a theorem of Harder about Eisenstein series claiming that all vector bundles have approximately the same motivic class of Borel reductions as the degree of Borel reduction tends to -infinity.
引用
收藏
页码:687 / 766
页数:80
相关论文
共 50 条
  • [31] On the motives of moduli of parabolic chains and parabolic Higgs bundles
    Do, Viet Cuong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [32] A Torelli theorem for the moduli space of Higgs bundles on a curve
    Biswas, I
    Gómez, TL
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 159 - 169
  • [33] Torelli theorems for moduli of logarithmic connections and parabolic bundles
    Ronnie Sebastian
    Manuscripta Mathematica, 2011, 136 : 249 - 271
  • [34] Torelli theorems for moduli of logarithmic connections and parabolic bundles
    Sebastian, Ronnie
    MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 249 - 271
  • [35] Vanishing of the top Chern classes of the moduli of vector bundles
    Kiem, Young-Hoon
    Li, Jun
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2007, 76 (01) : 45 - 115
  • [36] Integrable Systems and Torelli Theorems for the Moduli Spaces of Parabolic Bundles and Parabolic Higgs Bundles
    Biswas, Indranil
    Gomez, Tomas L.
    Logares, Marina
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (03): : 504 - 520
  • [37] Picard group and fundamental group of the moduli of Higgs bundles on curves
    Chakraborty, Sujoy
    Paul, Arjun
    COMPLEX MANIFOLDS, 2018, 5 (01): : 146 - 149
  • [38] Hitchin Fibration on Moduli of Symplectic and Orthogonal Parabolic Higgs Bundles
    Sumit Roy
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [39] Moduli Spaces of Framed G–Higgs Bundles and Symplectic Geometry
    Indranil Biswas
    Marina Logares
    Ana Peón-Nieto
    Communications in Mathematical Physics, 2020, 376 : 1875 - 1908
  • [40] The intersection form on moduli spaces of twisted -Higgs bundles vanishes
    Heinloth, Jochen
    MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1499 - 1526