Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields

被引:11
|
作者
Vats, Divyanshu [1 ]
Moura, Jose M. F. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
关键词
Gauss-Markov random fields; Gauss-Markov random processes; Kalman filter; random fields; Rauch-Tung-Striebel smoother; recursive estimation; telescoping representation; LINEAR-ESTIMATION; REALIZATION; PROPERTY; IMAGES; MODELS;
D O I
10.1109/TIT.2011.2104612
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present telescoping recursive representations for both continuous and discrete indexed noncausal Gauss-Markov random fields. Our recursions start at the boundary (a hypersurface in R-d, d >= 1) and telescope inwards. For example, for images, the telescoping representation reduce recursions from d = 2 to d = 1, i.e., to recursions on a single dimension. Under appropriate conditions, the recursions for the random field are linear stochastic differential/difference equations driven by white noise, for which we derive recursive estimation algorithms, that extend standard algorithms, like the Kalman-Bucy filter and the Rauch-Tung-Striebel smoother, to noncausal Markov random fields.
引用
收藏
页码:1645 / 1663
页数:19
相关论文
共 50 条
  • [41] The Dispersion of the Gauss-Markov Source
    Tian, Peida
    Kostina, Victoria
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6355 - 6384
  • [42] ILLUSTRATING THE GAUSS-MARKOV THEOREM
    JESKE, DR
    [J]. AMERICAN STATISTICIAN, 1994, 48 (03): : 237 - 238
  • [43] A recursive algorithm for Markov random fields
    Bartolucci, F
    Besag, J
    [J]. BIOMETRIKA, 2002, 89 (03) : 724 - 730
  • [44] A Smoother-Predictor of 3D Hidden Gauss-Markov Random Fields for Weather Forecast
    Borri, Alessandro
    Carravetta, Francesco
    White, Langford B.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3331 - 3336
  • [45] From Parameter Estimation to Dispersion of Nonstationary Gauss-Markov Processes
    Tian, Peida
    Kostina, Victoria
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2044 - 2048
  • [46] A Modern Gauss-Markov Theorem
    Hansen, Bruce E.
    [J]. ECONOMETRICA, 2022, 90 (03) : 1283 - 1294
  • [47] On robust estimation of the Gauss-Markov model with a singular covariance matrix
    Fang, Xing
    Hu, Yu
    Wang, Bin
    Kutterer, Hansjoerg
    Zeng, Wenxian
    Li, Dawei
    [J]. MEASUREMENT, 2023, 223
  • [48] NOTE ON GAUSS-MARKOV THEOREM
    EATON, ML
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1978, 30 (01) : 181 - 184
  • [49] ISOTROPIC GAUSS-MARKOV CURRENTS
    WONG, E
    ZAKAI, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1989, 82 (01) : 137 - 154
  • [50] The Dispersion of the Gauss-Markov Source
    Tian, Peida
    Kostina, Victoria
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1490 - 1494