A Smoother-Predictor of 3D Hidden Gauss-Markov Random Fields for Weather Forecast

被引:0
|
作者
Borri, Alessandro [1 ]
Carravetta, Francesco [1 ]
White, Langford B. [2 ]
机构
[1] CNR, Ist Analisi Sistemi Informat A Ruberti, I-00185 Rome, Italy
[2] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA, Australia
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we offer a solution to the stochastic realization problem for a Gaussian Markov field defined on a tridimensional lattice, which is a graph with nodes regularly positioned to form a discrete parallelepiped in the euclidean space and arcs connecting 'internal' nodes with five nearest neighbors along the three coordinate directions. Next we show how the stochastic realization can be used for weather forecasting via a Kalman predictor, relying on partial observations and just a purely statistic a-priori knowledge of the Markov field, similarly to a classic Hidden Markov Model (HMM). An application carried out on real climate data shows the effectiveness of the approach taken.
引用
收藏
页码:3331 / 3336
页数:6
相关论文
共 50 条
  • [1] HOMOGENEOUS GAUSS-MARKOV RANDOM FIELDS
    WONG, E
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1625 - &
  • [2] Quickest Detection of Gauss-Markov Random Fields
    Heydari, Javad
    Tajer, Ali
    Poor, H. Vincent
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 808 - 814
  • [3] Identification of 2-D noncausal Gauss-Markov random fields
    Cusani, R
    Baccarelli, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (03) : 759 - 764
  • [4] Optimal smoothing for spherical Gauss-Markov Random Fields with application to weather data estimation
    Borri, Alessandro
    Carravetta, Francesco
    White, Langford B.
    [J]. EUROPEAN JOURNAL OF CONTROL, 2017, 33 : 43 - 51
  • [5] Gauss-Markov random fields (GMrf) with continuous indices
    Moura, JMF
    Goswami, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (05) : 1560 - 1573
  • [6] Large deviations analysis for the detection of 2D hidden Gauss-Markov random fields using sensor networks
    Sung, Youngchul
    Poor, H. Vincent
    Yu, Heejung
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3893 - +
  • [7] RECURSIVE STRUCTURE OF NONCAUSAL GAUSS-MARKOV RANDOM-FIELDS
    MOURA, JMF
    BALRAM, N
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 334 - 354
  • [8] PROBABILISTIC IMAGE PROCESSING BY EXTENDED GAUSS-MARKOV RANDOM FIELDS
    Tanaka, Kazuyuki
    Morin, Nicolas
    Yasuda, Muneki
    Titterington, D. M.
    [J]. 2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 617 - +
  • [9] Telescoping Recursive Representations and Estimation of Gauss-Markov Random Fields
    Vats, Divyanshu
    Moura, Jose M. F.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) : 1645 - 1663
  • [10] COMPOUND GAUSS-MARKOV RANDOM-FIELDS FOR IMAGE ESTIMATION
    JENG, FC
    WOODS, JW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (03) : 683 - 697