LOCAL PARTITIONED QUANTILE REGRESSION

被引:0
|
作者
Zhang, Zhengyu [1 ]
机构
[1] Shanghai Univ Finance & Econ, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
VARYING COEFFICIENT MODELS; SEMIPARAMETRIC ESTIMATION; NONPARAMETRIC-ESTIMATION; BAHADUR REPRESENTATION;
D O I
10.1017/S0266466616000293
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider the nonparametric estimation of a broad class of quantile regression models, in which the partially linear, additive, and varying coefficient models are nested. We propose for the model a two-stage kernel-weighted least squares estimator by generalizing the idea of local partitioned mean regression (Christopeit and Hoderlein, 2006, Econometrica 74, 787-817) to a quantile regression framework. The proposed estimator is shown to have desirable asymptotic properties under standard regularity conditions. The new estimator has three advantages relative to existing methods. First, it is structurally simple and widely applicable to the general model as well as its submodels. Second, both the functional coefficients and their derivatives up to any given order can be estimated. Third, the procedure readily extends to censored data, including fixed or random censoring. A Monte Carlo experiment indicates that the proposed estimator performs well in finite samples. An empirical application is also provided.
引用
收藏
页码:1081 / 1120
页数:40
相关论文
共 50 条
  • [31] Estimation of heteroscedasticity by local composite quantile regression and matrix decomposition
    Li, Yu-Ning
    Zhang, Yi
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (02) : 291 - 307
  • [32] Local bilinear multiple-output quantile/depth regression
    Hallin, Marc
    Lu, Zudi
    Paindaveine, Davy
    Siman, Miroslav
    [J]. BERNOULLI, 2015, 21 (03) : 1435 - 1466
  • [33] Asymptotic normality for a local composite quantile regression estimator of regression function with truncated data
    Wang, Jiang-Feng
    Ma, Wei-Min
    Zhang, Hui-Zeng
    Wen, Li-Min
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (06) : 1571 - 1579
  • [34] Quantile regression
    Koenker, R
    Hallock, KF
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [35] Quantile regression
    Karlsson, Andreas
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [36] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2019, 16 : 451 - 452
  • [37] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    [J]. JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [38] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [39] PARTITIONED RIDGE REGRESSION
    FAREBROTHER, RW
    [J]. TECHNOMETRICS, 1978, 20 (02) : 121 - 122
  • [40] A local moment type estimator for an extreme quantile in regression with random covariates
    Goegebeur, Yuri
    Guillou, Armelle
    Osmann, Michael
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (01) : 319 - 343