LOCAL PARTITIONED QUANTILE REGRESSION

被引:0
|
作者
Zhang, Zhengyu [1 ]
机构
[1] Shanghai Univ Finance & Econ, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
VARYING COEFFICIENT MODELS; SEMIPARAMETRIC ESTIMATION; NONPARAMETRIC-ESTIMATION; BAHADUR REPRESENTATION;
D O I
10.1017/S0266466616000293
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider the nonparametric estimation of a broad class of quantile regression models, in which the partially linear, additive, and varying coefficient models are nested. We propose for the model a two-stage kernel-weighted least squares estimator by generalizing the idea of local partitioned mean regression (Christopeit and Hoderlein, 2006, Econometrica 74, 787-817) to a quantile regression framework. The proposed estimator is shown to have desirable asymptotic properties under standard regularity conditions. The new estimator has three advantages relative to existing methods. First, it is structurally simple and widely applicable to the general model as well as its submodels. Second, both the functional coefficients and their derivatives up to any given order can be estimated. Third, the procedure readily extends to censored data, including fixed or random censoring. A Monte Carlo experiment indicates that the proposed estimator performs well in finite samples. An empirical application is also provided.
引用
收藏
页码:1081 / 1120
页数:40
相关论文
共 50 条
  • [1] Local partitioned regression
    Christopeit, N
    Hoderlein, SGN
    [J]. ECONOMETRICA, 2006, 74 (03) : 787 - 817
  • [2] Comment on "Local quantile regression"
    Koenker, Roger
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (07) : 1134 - 1135
  • [3] Local linear quantile regression
    Yu, KM
    Jones, MC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 228 - 237
  • [4] Rejoinder: Local quantile regression
    Spokoiny, Vladimir
    Wang, Weining
    Haerdle, Wolfgang Karl
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (07) : 1145 - 1149
  • [5] Improved local quantile regression
    Liu, Xi
    Yu, Keming
    Xu, Qifa
    Tang, Xueqing
    [J]. STATISTICAL MODELLING, 2019, 19 (05) : 501 - 523
  • [6] Residual projection for quantile regression in vertically partitioned big data
    Fan, Ye
    Li, Jr-Shin
    Lin, Nan
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (02) : 710 - 735
  • [7] Residual projection for quantile regression in vertically partitioned big data
    Ye Fan
    Jr-Shin Li
    Nan Lin
    [J]. Data Mining and Knowledge Discovery, 2023, 37 : 710 - 735
  • [8] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [9] Quantile Regression under Local Misspecification
    Duan, Xiao-gang
    Wang, Qi-hua
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 790 - 802
  • [10] Local linear spatial quantile regression
    Hallin, Marc
    Lu, Zudi
    Yu, Keming
    [J]. BERNOULLI, 2009, 15 (03) : 659 - 686