A data driven Information theoretic feature extraction in EEG-based Motor Imagery BCI

被引:0
|
作者
Lee, Ji-Hack [1 ]
Choi, Young-Seok [1 ]
机构
[1] Kwangwoon Univ, Dept Elect & Commun Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Brain-Computer Interface; Motor Imagery; Electroencephalogram; multivariate Hilbert-Huang Transform; Dispersion Entropy;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Motor Imagery (MI) is the most popular Brain-Computer Interface (BCI) model which aimed at analyzing and classifying the electroencephalogram (EEG) measured without direct human's motor movements. The EEG recording is measured on the scalp noninvasively, which has nonstationarity and nonlinearity. To tackle the obstacle for analyzing the EEG obtained during MI tasks, we propose a novel feature extraction method by combining the Hilbert-Huang Transform (HHT) and the dispersion entropy (DisEn). Here, we develop the multivariate HHT using intrinsic mode functions (IMFs) obtained through multivariate empirical mode decomposition (MEMD) instead of HHT using existing EMD. By comparing the classification performance with other traditional methods, we validate the improved capacity of the proposed method, which shows its usefulness in MI BCI model.
引用
收藏
页码:1373 / 1376
页数:4
相关论文
共 50 条
  • [1] EEG-based Motor Imagery Feature Extraction
    Liu, Yang
    Li, Niandiang
    Li, Yongxiang
    [J]. ADVANCES IN MECHATRONICS, AUTOMATION AND APPLIED INFORMATION TECHNOLOGIES, PTS 1 AND 2, 2014, 846-847 : 944 - 947
  • [2] Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue
    Talukdar, Upasana
    Hazarika, Shyamanta M.
    Gan, John Q.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
  • [3] Detection of Motor Imagery Movements in EEG-based BCI
    Bagh, Niraj
    Reddy, T. Janardhan
    Reddy, M. Ramasubba
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (05) : 1079 - 1091
  • [4] Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI
    Mishuhina, Vasilisa
    Jiang, Xudong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 783 - 787
  • [5] Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI
    Phadikar, Souvik
    Sinha, Nidul
    Ghosh, Rajdeep
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [6] A Lasso quantile periodogram based feature extraction for EEG-based motor imagery
    Meziani, Aymen
    Djouani, Karim
    Medkour, Tarek
    Chibani, Abdelghani
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2019, 328
  • [7] Classification of EEG-based motor imagery BCI by using ECOC
    Mobarezpour, Jahangir
    Khosrowabadi, Reza
    Ghaderi, Reza
    Navi, Keivan
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (02): : 23 - 33
  • [8] A New Fast Approach for an EEG-based Motor Imagery BCI Classification
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (01) : 232 - 241
  • [9] Exploring virtual environments with an EEG-based BCI through motor imagery
    Leeb, R
    Scherer, R
    Keinrath, C
    Guger, C
    Pfurtscheller, G
    [J]. BIOMEDIZINISCHE TECHNIK, 2005, 50 (04): : 86 - 91
  • [10] Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification
    Herman, Pawel
    Prasad, Girijesh
    McGinnity, Thomas Martin
    Coyle, Damien
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2008, 16 (04) : 317 - 326