A data driven Information theoretic feature extraction in EEG-based Motor Imagery BCI

被引:0
|
作者
Lee, Ji-Hack [1 ]
Choi, Young-Seok [1 ]
机构
[1] Kwangwoon Univ, Dept Elect & Commun Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Brain-Computer Interface; Motor Imagery; Electroencephalogram; multivariate Hilbert-Huang Transform; Dispersion Entropy;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Motor Imagery (MI) is the most popular Brain-Computer Interface (BCI) model which aimed at analyzing and classifying the electroencephalogram (EEG) measured without direct human's motor movements. The EEG recording is measured on the scalp noninvasively, which has nonstationarity and nonlinearity. To tackle the obstacle for analyzing the EEG obtained during MI tasks, we propose a novel feature extraction method by combining the Hilbert-Huang Transform (HHT) and the dispersion entropy (DisEn). Here, we develop the multivariate HHT using intrinsic mode functions (IMFs) obtained through multivariate empirical mode decomposition (MEMD) instead of HHT using existing EMD. By comparing the classification performance with other traditional methods, we validate the improved capacity of the proposed method, which shows its usefulness in MI BCI model.
引用
收藏
页码:1373 / 1376
页数:4
相关论文
共 50 条
  • [41] Features extraction method of motor imagery EEG based on information granules
    Hu, Jian-feng
    Mu, Zhen-dong
    Yin, Jing-hai
    [J]. FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 1982 - 1985
  • [42] Feature Selection Applying Statistical and Neurofuzzy Methods to EEG-Based BCI
    Martinez-Leon, Juan-Antonio
    Cano-Izquierdo, Jose-Manuel
    Ibarrola, Julio
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [43] A New Method to Generate Artificial Frames Using the Empirical Mode Decomposition for an EEG-Based Motor Imagery BCI
    Dinares-Ferran, Josep
    Ortner, Rupert
    Guger, Christoph
    Sole-Casals, Jordi
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [44] EEG-based BCI System for Classifying Motor Imagery Tasks of the Same Hand Using Empirical Mode Decomposition
    Alazrai, Rami
    Aburub, Sarah
    Fallouh, Farah
    Daoud, Mohammad I.
    [J]. 2017 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2017, : 615 - 619
  • [45] Using brain connectivity metrics from synchrostates to perform motor imagery classification in EEG-based BCI systems
    Santamaria, Lorena
    James, Christopher
    [J]. HEALTHCARE TECHNOLOGY LETTERS, 2018, 5 (03) : 88 - 93
  • [46] Round Cosine Transform Based Feature Extraction of Motor Imagery EEG Signals
    Braga, R. B.
    Lopes, C. D.
    Becker, T.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 511 - 515
  • [47] Motor imagery based EEG features visualization for BCI applications
    Tariq, Madiha
    Trivailo, Pavel M.
    Simic, Milan
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 1936 - 1944
  • [48] INDEPENDENT EEG COMPONENTS ARE MEANINGFUL (FOR BCI BASED ON MOTOR IMAGERY)
    Kerechanin, Y., V
    Bobrov, P. D.
    Frolov, A. A.
    Husek, D.
    [J]. NEURAL NETWORK WORLD, 2021, 31 (05) : 355 - 375
  • [49] Feature Extraction Method of Motor Imagery EEG Based on DTCWT Sample Entropy
    Meng Ming
    Lu Shaona
    Man Haitao
    Ma Yuliang
    Gao Yunyuan
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3964 - 3968
  • [50] The feature extraction of motor imagery EEG based on the time-frequency correction
    Wang Dongyang
    Jin Jing
    Wang Xingyu
    [J]. PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3803 - 3805