Exploring virtual environments with an EEG-based BCI through motor imagery

被引:14
|
作者
Leeb, R
Scherer, R
Keinrath, C
Guger, C
Pfurtscheller, G
机构
[1] Graz Univ Technol, Inst Comp Graph & Vis, Lab Brain Comp Interfaces, A-8010 Graz, Austria
[2] Guger Technol OEG, GTEC, A-8020 Graz, Austria
[3] Ludwig Boltzmann Inst Med Informat & Neuroinforma, A-8010 Graz, Austria
来源
BIOMEDIZINISCHE TECHNIK | 2005年 / 50卷 / 04期
关键词
Brain-Computer Interface (BCI); Virtual Reality (VR); electroencephalogram (EEG); navigation; motor imagery;
D O I
10.1515/BMT.2005.012
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we describe the possibility of navigating in a virtual environment using the output signal of an EEG-based Brain-Computer Interface (BCI). The graphical capabilities of virtual reality (VR) should help to create new BCI-paradigms and improve feedback presentation. The objective of this combination is to enhance the subject's learning process of gaining control of the BCI. In this study, the participant had to imagine left or right hand movements while exploring a virtual conference room. By imaging a left hand movement the subject turned virtually to the left inside the room and with right hand imagery to the right. In fact, three trained subjects reached 80 % to 100 % BCI classification accuracy in the course of the experimental sessions. All subjects were able to achieve a rotation in the VR to the left or right by approximately 45 degrees during one trial.
引用
收藏
页码:86 / 91
页数:6
相关论文
共 50 条
  • [1] Detection of Motor Imagery Movements in EEG-based BCI
    Bagh, Niraj
    Reddy, T. Janardhan
    Reddy, M. Ramasubba
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (05) : 1079 - 1091
  • [2] Classification of EEG-based motor imagery BCI by using ECOC
    Mobarezpour, Jahangir
    Khosrowabadi, Reza
    Ghaderi, Reza
    Navi, Keivan
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (02): : 23 - 33
  • [3] A New Fast Approach for an EEG-based Motor Imagery BCI Classification
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (01) : 232 - 241
  • [4] A Multimodal fNIRS and EEG-Based BCI Study on Motor Imagery and Passive Movement
    Yu, Juanhong
    Ang, Kai Keng
    Guan, Cuntai
    Wang, Chuanchu
    [J]. 2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 5 - 8
  • [5] Common Bayesian Network for Classification of EEG-Based Multiclass Motor Imagery BCI
    He, Lianghua
    Hu, Die
    Wan, Meng
    Wen, Ying
    von Deneen, Karen M.
    Zhou, MengChu
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (06): : 843 - 854
  • [7] Voting Strategy to Enhance Multimodel EEG-Based Classifier Systems for Motor Imagery BCI
    Almonacid, Miguel
    Ibarrola, Julio
    Cano-Izquierdo, Jose-Manuel
    [J]. IEEE SYSTEMS JOURNAL, 2016, 10 (03): : 1082 - 1088
  • [8] Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI
    Mishuhina, Vasilisa
    Jiang, Xudong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 783 - 787
  • [9] A data driven Information theoretic feature extraction in EEG-based Motor Imagery BCI
    Lee, Ji-Hack
    Choi, Young-Seok
    [J]. 2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 1373 - 1376
  • [10] Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue
    Talukdar, Upasana
    Hazarika, Shyamanta M.
    Gan, John Q.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)