Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance

被引:34
|
作者
Lin, Jie [1 ,2 ,3 ]
Lim, Jin-Myoung [4 ,5 ]
Youn, Duck Hyun [2 ,3 ,6 ]
Kawashima, Kenta [2 ,3 ]
Kim, Jun-Hyuk [2 ,3 ]
Liu, Yang [2 ,3 ,7 ]
Guo, Hang [1 ]
Henkelman, Graeme [4 ,5 ]
Heller, Adam [2 ,3 ]
Mullins, Charles Buddie [2 ,3 ,8 ]
机构
[1] Xiamen Univ, Pen Tung Sah Micro Nano Sci & Technol Inst, Xiamen 361005, Fujian, Peoples R China
[2] Univ Texas Austin, Ctr Electrochem, Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Electrochem, Dept Chem, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[5] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[6] Kangwon Natl Univ, Dept Chem Engn, Chunchon 24341, Gangwon Do, South Korea
[7] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[8] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
copper tin sulfide; nanotube; core-shell; gelation-solvothermal; density functional theory; lithium battery; GRAPHENE OXIDE COMPOSITES; CATHODE MATERIALS; THIN-FILM; LITHIUM; TIN; CAPACITY; LIFE;
D O I
10.1021/acsnano.7b05294
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Through a gelationsolvothermal method without heteroadditives, CuSnS composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu3-4SnS4 core and Cu2SnS3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g(-1) after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.
引用
收藏
页码:10347 / 10356
页数:10
相关论文
共 50 条
  • [41] Self-assembled ultrathin nanotubes on diamond (100) surface
    Lu, Shaohua
    Wang, Yanchao
    Liu, Hanyu
    Miao, Mao-sheng
    Ma, Yanming
    NATURE COMMUNICATIONS, 2014, 5
  • [42] Self-Assembled Melamine Monolayer on Cu(111)
    Lin, Yu-Pu
    Ourdjini, Oualid
    Giovanelli, Luca
    Clair, Sylvain
    Faury, Thomas
    Ksari, Younal
    Themlin, Jean-Marc
    Porte, Louis
    Abel, Mathieu
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (19): : 9895 - 9902
  • [43] Self-assembled structures of glycine on Cu(111)
    Zhao, XY
    Yan, H
    Zhao, RG
    Yang, WS
    LANGMUIR, 2003, 19 (03) : 809 - 813
  • [44] Synthesis and structural studies of self-assembled organic nanotubes
    Mésini, PJ
    Díaz, N
    Simon, FX
    Schmutz, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1205 - U1205
  • [45] Controlled patterning of aligned self-assembled peptide nanotubes
    Reches, Meital
    Gazit, Ehud
    NATURE NANOTECHNOLOGY, 2006, 1 (03) : 195 - 200
  • [46] Surface dispersion and hardening of self-assembled diacetylene nanotubes
    Lee, SB
    Koepsel, RR
    Russell, AJ
    NANO LETTERS, 2005, 5 (11) : 2202 - 2206
  • [47] Self-assembled peptide nanotubes for electronics and sensor devices
    Bai, Hanying
    Matsui, Hiroshi
    de la Rica, Roberto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [48] Application of carbon nanotubes as template for self-assembled nanowires
    Lin, Wei-Syuan
    Liou, Wei-Jen
    Chen, Cheng-Han
    Lin, Hong-Ming
    Hwu, Yeu-Kuang
    DIAMOND AND RELATED MATERIALS, 2009, 18 (2-3) : 328 - 331
  • [49] Self-assembled Janus base nanotubes: chemistry and applications
    Zhang, Wuxia
    Chen, Yupeng
    FRONTIERS IN CHEMISTRY, 2024, 11
  • [50] ATOMISTIC MODELING AND MECHANICS OF SELF-ASSEMBLED ORGANIC NANOTUBES
    Ruiz, Luis
    Keten, Sinan
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2011, 3 (04) : 667 - 684