Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance

被引:34
|
作者
Lin, Jie [1 ,2 ,3 ]
Lim, Jin-Myoung [4 ,5 ]
Youn, Duck Hyun [2 ,3 ,6 ]
Kawashima, Kenta [2 ,3 ]
Kim, Jun-Hyuk [2 ,3 ]
Liu, Yang [2 ,3 ,7 ]
Guo, Hang [1 ]
Henkelman, Graeme [4 ,5 ]
Heller, Adam [2 ,3 ]
Mullins, Charles Buddie [2 ,3 ,8 ]
机构
[1] Xiamen Univ, Pen Tung Sah Micro Nano Sci & Technol Inst, Xiamen 361005, Fujian, Peoples R China
[2] Univ Texas Austin, Ctr Electrochem, Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Electrochem, Dept Chem, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[5] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[6] Kangwon Natl Univ, Dept Chem Engn, Chunchon 24341, Gangwon Do, South Korea
[7] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[8] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
copper tin sulfide; nanotube; core-shell; gelation-solvothermal; density functional theory; lithium battery; GRAPHENE OXIDE COMPOSITES; CATHODE MATERIALS; THIN-FILM; LITHIUM; TIN; CAPACITY; LIFE;
D O I
10.1021/acsnano.7b05294
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Through a gelationsolvothermal method without heteroadditives, CuSnS composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu3-4SnS4 core and Cu2SnS3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g(-1) after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.
引用
收藏
页码:10347 / 10356
页数:10
相关论文
共 50 条
  • [31] Self-Assembled Porous ZnS Nanospheres with High Photocatalytic Performance
    Jia, Weina
    Wu, Xiang
    Jia, Boxiang
    Qu, Fengyu
    Fan, Hong Jin
    SCIENCE OF ADVANCED MATERIALS, 2013, 5 (10) : 1329 - 1336
  • [32] Molecular Dynamics Simulations of High-Performance, Dissipationless Desalination across Self-Assembled Amyloid Beta Nanotubes
    Liu, Yu-Cheng
    Yang, Dah-Yen
    Deng, Jin-Pei
    Sheu, Sheh-Yi
    SMALL, 2023, 19 (16)
  • [33] Effect of Cu/Sn Concentration Ratio on the Phase Equilibrium-Related Properties of Cu-Sn-S Sprayed Materials
    M. Bouaziz
    K. Boubaker
    M. Amlouk
    S. Belgacem
    Journal of Phase Equilibria and Diffusion, 2010, 31 : 498 - 503
  • [34] A study on self-assembled activation by Pd/Sn colloids
    Guixiang, Wang
    Ning, Li
    Guojun, Dong
    INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING, PTS 1-3, 2007, 6423
  • [35] Antibacterial and Antibiofilm Properties of Self-Assembled Dipeptide Nanotubes
    Soares, Iris
    Rodrigues, Ines
    da Costa, Paulo Martins
    Gales, Luis
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [36] Large-Scale Self-Assembled Ag Nanotubes
    韦国丹
    南策文
    俞大鹏
    Tsinghua Science and Technology, 2005, (06) : 102 - 106
  • [37] Chirality controlled responsive self-assembled nanotubes in water
    van Dijken, D. J.
    Stacko, P.
    Stuart, M. C. A.
    Browne, W. R.
    Feringa, B. L.
    CHEMICAL SCIENCE, 2017, 8 (03) : 1783 - 1789
  • [38] Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes
    Cho, Eun Chan
    Choi, Jeong-Woo
    Lee, Moonyong
    Koo, Kee-Kahb
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2008, 313 : 95 - 99
  • [39] Elementary Building Blocks of Self-Assembled Peptide Nanotubes
    Amdursky, Nadav
    Molotskii, Michel
    Gazit, Ehud
    Rosenman, Gil
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) : 15632 - 15636
  • [40] Surface modification by self-assembled monolayer and carbon nanotubes
    Pandey, Padmaker
    Pandey, Anamika
    Shukla, Nikhil K.
    EMERGING MATERIALS RESEARCH, 2017, 6 (01) : 15 - 20