Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance

被引:34
|
作者
Lin, Jie [1 ,2 ,3 ]
Lim, Jin-Myoung [4 ,5 ]
Youn, Duck Hyun [2 ,3 ,6 ]
Kawashima, Kenta [2 ,3 ]
Kim, Jun-Hyuk [2 ,3 ]
Liu, Yang [2 ,3 ,7 ]
Guo, Hang [1 ]
Henkelman, Graeme [4 ,5 ]
Heller, Adam [2 ,3 ]
Mullins, Charles Buddie [2 ,3 ,8 ]
机构
[1] Xiamen Univ, Pen Tung Sah Micro Nano Sci & Technol Inst, Xiamen 361005, Fujian, Peoples R China
[2] Univ Texas Austin, Ctr Electrochem, Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Electrochem, Dept Chem, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[5] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[6] Kangwon Natl Univ, Dept Chem Engn, Chunchon 24341, Gangwon Do, South Korea
[7] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[8] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
copper tin sulfide; nanotube; core-shell; gelation-solvothermal; density functional theory; lithium battery; GRAPHENE OXIDE COMPOSITES; CATHODE MATERIALS; THIN-FILM; LITHIUM; TIN; CAPACITY; LIFE;
D O I
10.1021/acsnano.7b05294
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Through a gelationsolvothermal method without heteroadditives, CuSnS composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu3-4SnS4 core and Cu2SnS3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g(-1) after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.
引用
收藏
页码:10347 / 10356
页数:10
相关论文
共 50 条
  • [1] A crystalline Cu-Sn-S framework for high-performance lithium storage
    Nie, Lina
    Zhang, Yu
    Ye, Kaiqi
    Han, Jianyu
    Wang, Yue
    Rakesh, Ganguly
    Li, Yongxin
    Xu, Rong
    Yan, Qingyu
    Zhang, Qichun
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) : 19410 - 19416
  • [2] Thermoelectric properties of Cu-Sn-S
    Hasaka, M
    Aki, T
    Morimura, T
    Kondo, S
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (09) : 855 - 859
  • [3] Self-assembled nanotubes
    不详
    CHEMISTRY IN BRITAIN, 2001, 37 (11) : 17 - 17
  • [4] COPPER TIN SULFIDES IN THE SYSTEM CU-SN-S
    WU, DQ
    KNOWLES, CR
    CHANG, LLY
    MINERALOGICAL MAGAZINE, 1986, 50 (356) : 323 - 325
  • [5] Self-assembled pyrazinacene nanotubes
    Richards, Gary J.
    Hill, Jonathan P.
    Labuta, Jan
    Wakayama, Yutaka
    Akada, Misaho
    Ariga, Katsuhiko
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (11) : 4868 - 4876
  • [6] Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics
    Guo, Qiangbing
    Ji, Meixi
    Yao, Yunhua
    Liu, Meng
    Luo, Zhi-Chao
    Zhang, Shian
    Liu, Xiaofeng
    Qiu, Jianrong
    NANOSCALE, 2016, 8 (43) : 18277 - 18281
  • [7] Self-assembled polyaniline nanofibers/nanotubes
    Chiou, Nan-Rong
    Lee, L. James
    Epstein, Arthur J.
    CHEMISTRY OF MATERIALS, 2007, 19 (15) : 3589 - 3591
  • [8] Chromatography on self-assembled carbon nanotubes
    Saridara, C
    Mitra, S
    ANALYTICAL CHEMISTRY, 2005, 77 (21) : 7094 - 7097
  • [9] Self-assembled nanotubes in organic solvents
    Diaz, Nancy
    Simon, Francois-Xavier
    Schmutz, Marc
    Mesini, Philippe
    MACROMOLECULAR SYMPOSIA, 2006, 241 : 68 - 74
  • [10] Self-assembled structures of halloysite nanotubes: towards the development of high-performance biomedical materials
    Zhao, Xiujuan
    Zhou, Changren
    Liu, Mingxian
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (05) : 838 - 851