PARTICLE FILTER GREYWOLF OPTIMIZATION FOR PARAMETER ESTIMATION OF NONLINEAR DYNAMIC SYSTEM

被引:0
|
作者
Zhang, Cuilian [1 ]
Yang, Xu [1 ]
Li Lingbo [1 ]
Wong, Derek F. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
关键词
Particle Filter; MCMC; Grey Wolf Optimization; Parameter Estimation; UNCERTAINTY; MCMC;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle filter samplers, Markov chain Monte Carlo (MCMC)samplers, and swarm intelligence can be used for parameter estimation with posterior probability distribution in nonlinear dynamic system. However the global exploration capabilities and efficiency of the sampler rely on the moving step of particle filter sampler. In this paper, we presented a mixing sampler algorithm: particle filter grey wolf optimization sampler(PF-GWO). PF-GWO sampler is operated by combining grey wolf optimization with Metropolis ratio into framework of particle filter, which is suitable to estimate unknown static parameters of nonlinear dynamic models. Based on Bayesian framework, parameter estimation of Lorenz model shows that PF-GWO sampler is superior to other combined particle filter sampler algorithms with large range prior distribution.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [1] Parameter Estimation for Nonlinear Disease Dynamical System using Particle Filter
    Rehman, M. Javvad Ur
    Dass, Sarat Chandra
    Asirvadam, Vijanth Sagayan
    Adly, Ahmed
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), 2015, : 143 - 147
  • [2] Simplex Optimization for Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Ulker, Muhammed Akif
    Uzunoglu, Bahri
    [J]. 17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 399 - 404
  • [3] Parameter Estimation of the MISO Nonlinear System Based on Improved Particle Swarm Optimization
    Fan, Huaike
    Lin, Weixing
    [J]. MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2563 - 2567
  • [4] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    [J]. CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [5] Optimization-based particle filter for state and parameter estimation
    Li Fu
    Qi Fei
    Shi Guangming
    Zhang Li
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2009, 20 (03) : 479 - 484
  • [7] STATE ESTIMATION OF A NONLINEAR SYSTEM USING PARTICLE FILTER
    Anandhakumar, K.
    Ali, I. Syed Meer Kulam
    Selvakumar, K.
    Raja, K.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 805 - 808
  • [8] Particle Swarm Optimization for Chaotic System Parameter Estimation
    Samanta, B.
    Nataraj, C.
    [J]. 2009 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2009, : 74 - 80
  • [9] Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Uzunoglu, Bahri
    Akifulker, Muhammed
    Bayazit, Dervis
    [J]. 2016 57TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2016,
  • [10] A particle swarm optimized particle filter for nonlinear system state estimation
    Tong, Guofeng
    Fang, Zheng
    Xu, Xinhe
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 438 - +